我们知道命题“在直角三角形中,如果有一个内角为30°,那么这个30°的内角所对的直角边等于斜边的一半.”是真命题.
(1)请写出上面命题的逆命题:在直角三角形中,如果______,那么______.
(2)你写出的逆命题是真命题吗?如果是,请写出证明过程,如若不是,请举出反例.(书写证明过程前,要结合图形写出已知、求证;若是举反例,也要结合反例图作出说明)
解:(1)原命题的逆命题为:在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的内角等于30°;
故答案为有一条直角边等于斜边的一半,这条直角边所对的内角等于30°;
(2)逆命题是真命题.
已知:在△ABC中,∠ACB=90°,BC=
AB,如图,
求证:∠A=30°.
证明:取AB的中点D,连结DC,
则DC=DB=DA,
∵BC=
AB,
∴DB=DC=BC,
∴△BDC为等边三角形,
∴∠B=60°,
∴∠A=90°-60°=30°.
分析:(1)把原命题的题设与结论互换即可得到它的逆命题;
(2)先写出已知、求证,再利用直角三角形斜边上的中线等于斜边的一半可证明逆命题是真命题.
点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.