精英家教网 > 初中数学 > 题目详情

【题目】如图,在正方形ABCD中,AB=12,点EBC的中点,以CD为直径作半圆CFD,点F为半圆的中点,连接AFEF,图中阴影部分的面积是_________

【答案】18+18π

【解析】

FHBCH,连接AE,如图,根据正方形的性质和切线的性质得BE=CE=CH=FH=6,则利用勾股定理可计算出,通过RtABE≌△EHF得∠AEF=90°,然后利用图中阴影部分的面积=S正方形ABCD+S半圆-SABE-SAEF进行计算.

解:作FHBCH,连接AE,如图,

∵点EBC的中点,点F为半圆的中点,

BE=CE=CH=FH=6

易得RtABE≌△EHF

∴∠AEB=EFH

而∠EFH+FEH=90°

∴∠AEB+FEH=90°

∴∠AEF=90°

∴图中阴影部分的面积=S正方形ABCD+S半圆-SABE-SAEF

=18+18π

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD内接于⊙OAB=ACBDAC,垂足为E,点FBD的延长线上,且DF=DC,连接AFCF.

(1)求证:∠BAC=2DAC

(2)AF10BC4,求tanBAD的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角ACB=75°,支架AF的长为2.50米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HE与支架AF所成的角FHE=60°,求篮框D到地面的距离(精确到0.01米)(参考数据:cos75°0.2588,sin75°0.9659,tan75°3.732,1.732,1.414)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一枚均匀的正四面体,四个面上分别标有数字1234,小红随机地抛掷一次,把着地一面的数字记为x;另有三张背面完全相同,正面上分别写有数字2,-11的卡片,小亮将其混合后,正面朝下放置在桌面上,并从中随机地抽取一张,把卡片正面上的数字记为y;然后他们计算出S=x+y的值.

(1)用树状图或列表法表示出S的所有可能情况;

(2)分别求出当S=0S<2时的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】皮特是红树林中学的一个外籍教师,目前,他在电脑上打英语单词的平均速度是打汉字速度的2倍.某次,他连续打完一篇3600字(单词)的英语文章和一篇600字的汉语文章,一共刚好花了40分钟.(速度按每分钟打多少个英语单词或汉字测算).

1)皮特目前平均每分钟打多少汉字;

2)最近,皮特把一篇汉语文章翻译成英文,原文加上译文总字数为6000字,已知它在1小时内(含1小时)打完了这6000字,问原文最多有多少汉字?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.

(1)求证:AF=DC;

(2)若ABAC,试判断四边形ADCF的形状,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.

(1)在图1中证明CE=CF;

(2)若∠ABC=90°,GEF的中点(如图2),直接写出∠BDG的度数;

(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:都是等边三角形,相交于点

的度数?

探究满足怎样条件时?互相平分,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,点DE在⊙O上,∠A=2BDE,点CAB的延长线上,∠C=ABD

1)求证:CE是⊙O的切线;

2)若⊙O的半径长为5BF=2,求EF的长.

查看答案和解析>>

同步练习册答案