18£®Èç¹ûÁ½¸ö¶þ´Îº¯ÊýµÄͼÏó¹ØÓÚyÖá¶Ô³Æ£¬ÎÒÃǾͳÆÕâÁ½¸ö¶þ´Îº¯Êý»¥Îª¡°¹ØÓÚyÖá¶Ô³Æ¶þ´Îº¯Êý¡±£¬ÈçͼËùʾ¶þ´Îº¯Êýy1=x2+2x+2Óëy2=x2-2x+2ÊÇ¡°¹ØÓÚyÖá¶Ô³Æ¶þ´Îº¯Êý¡±£®
£¨1£©Ö±½Óд³öÁ½ÌõͼÖС°¹ØÓÚyÖá¶Ô³Æ¶þ´Îº¯Êý¡±Í¼ÏóËù¾ßÓеĹ²Í¬Ìص㣮
£¨2£©¶þ´Îº¯Êýy=2£¨x+2£©2+1µÄ¡°¹ØÓÚyÖá¶Ô³Æ¶þ´Îº¯Êý¡±½âÎöʽΪy=2£¨x-2£©2+1£»¶þ´Îº¯Êýy=a£¨x-h£©2+kµÄ¡°¹ØÓÚyÖá¶Ô³Æ¶þ´Îº¯Êý¡±½âÎöʽΪy=a£¨x+h£©2+k£»
£¨3£©Æ½ÃæÖ±½Ç×ø±êϵÖУ¬¼Ç¡°¹ØÓÚyÖá¶Ô³Æ¶þ´Îº¯Êý¡±µÄͼÏóÓëyÖáµÄ½»µãΪA£¬ËüÃǵÄÁ½¸ö¶¥µã·Ö±ðΪB£¬C£¬ÇÒBC=6£¬Ë³´ÎÁ¬½ÓµãA£¬B£¬O£¬CµÃµ½Ò»¸öÃæ»ýΪ24µÄÁâÐΣ¬Çó¡°¹ØÓÚyÖá¶Ô³Æ¶þ´Îº¯Êý¡±µÄº¯Êý±í´ïʽ£®

·ÖÎö £¨1£©¸ù¾Ý¡°¹ØÓÚyÖá¶Ô³Æ¶þ´Îº¯Êý¡±£¬¿ÉµÃ´ð°¸£»
£¨2£©¸ù¾Ý¡°¹ØÓÚyÖá¶Ô³Æ¶þ´Îº¯Êý¡±£¬¿ÉµÃ´ð°¸£»
£¨3£©¸ù¾Ý¡°¹ØÓÚyÖá¶Ô³Æ¶þ´Îº¯Êý¡±£¬ÁâÐεÄÃæ»ý£¬¿ÉµÃ¶¥µã×ø±ê£¬Í¼ÏóÓëyÖáµÄ½»µã£¬¸ù¾Ý´ý¶¨ÏµÊý·¨£¬¿ÉµÃ´ð°¸£®

½â´ð ½â£º£¨1£©Ö±½Óд³öÁ½ÌõͼÖС°¹ØÓÚyÖá¶Ô³Æ¶þ´Îº¯Êý¡±Í¼ÏóËù¾ßÓеĹ²Í¬Ìصãʱ¶¥µã¹ØÓÚyÖá¶Ô³Æ£¬¶Ô³ÆÖá¹ØÓÚyÖá¶Ô³Æ£¬

£¨2£©¶þ´Îº¯Êýy=2£¨x+2£©2+1µÄ¡°¹ØÓÚyÖá¶Ô³Æ¶þ´Îº¯Êý¡±½âÎöʽΪ y=2£¨x+2£©2+1£»
¶þ´Îº¯Êýy=a£¨x-h£©2+kµÄ¡°¹ØÓÚyÖá¶Ô³Æ¶þ´Îº¯Êý¡±½âÎöʽΪy=a£¨x+h£©2+k
¹Ê´ð°¸Îª£ºy=2£¨x+2£©2+1£¬y=a£¨x+h£©2+k£»

£¨3£©Èçͼ£¬
ÓÉBC=6£¬Ë³´ÎÁ¬½ÓµãA£¬B£¬O£¬CµÃµ½Ò»¸öÃæ»ýΪ24µÄÁâÐΣ¬µÃ
OA=8£¬Aµã×ø±êΪ£¨0£¬8£©£¬BµãµÄ×ø±êΪ£¨-3£¬4£©£¬
ÉèÒ»¸öÅ×ÎïÏߵĽâÎöʽΪy=a£¨x+3£©2+4£¬½«Aµã×ø±ê´úÈ룬µÃ
9a+4=8£¬
½âµÃa=$\frac{4}{9}$£¬
y=$\frac{4}{9}$£¨x+3£©2+4¹ØÓÚyÖá¶Ô³Æ¶þ´Îº¯ÊýµÄº¯Êý±í´ïʽy=$\frac{4}{9}$£¨x-3£©2+4£®

µãÆÀ ±¾Ì⿼²éÁË´ý¶¨ÏµÊý·¨£¬ÀûÓÃÁâÐεÄÐÔÖʵóöAµã×ø±êΪ£¨0£¬8£©£¬BµãµÄ×ø±êΪ£¨-3£¬4£©ÊǽâÌâ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®Èçͼ£¬½«Ò»¸±Èý½Ç°åºÍÒ»ÕŶԱßƽÐеÄÖ½Ìõ°´ÏÂÁз½Ê½°Ú·Å£¬Á½¸öÈý½Ç°åµÄÒ»Ö±½Ç±ßÖغϣ¬º¬45¡ã½ÇµÄÖ±½ÇÈý½Ç°åµÄб±ßÓëÖ½ÌõÒ»±ßÖغϣ¬º¬30¡ã½ÇµÄÈý½Ç°åµÄÒ»¸ö¶¥µãÔÚÖ½ÌõµÄÁíÒ»±ßÉÏ£¬Ôò¡Ï1µÄ¶ÈÊýÊÇ£¨¡¡¡¡£©
A£®30¡ãB£®20¡ãC£®15¡ãD£®14¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Èçͼ£¬ÒÑÖª?ABCDÖУ¬AB=2BC£¬AE¡ÍBCÓÚE£¬FÊÇCDµÄÖе㣬¡ÏFEC=54¡ã£¬Çó¡ÏBµÄ¶ÈÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¬¡ÏA=¡ÏB=90¡ã£¬EÊÇABÉϵÄÒ»µã£¬ÇÒAE=BC£¬¡Ï1=¡Ï2£®
£¨1£©ÇóÖ¤£ºRt¡÷ADEÓëRt¡÷BECÈ«µÈ£»
£¨2£©ÇóÖ¤£º¡÷CDEÊÇÖ±½ÇÈý½ÇÐΣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÈçͼÔÚ¾ØÐÎABCDÖУ¬AB=nAD£¬µãE¡¢F·Ö±ðÔÚAB¡¢ADÉÏÇÒ²»Ó붥µãA¡¢B¡¢DÖغϣ¬¡ÏAEF=¡ÏBCE£¬Ô²O¹ýA¡¢E¡¢FÈýµã£®
£¨1£©ÇóÖ¤£ºÔ²OÓëCEÏàÇÐÓÚµãE£®
£¨2£©Èçͼ1£¬ÈôAF=2FD£¬ÇÒ¡ÏAEF=30¡ã£¬ÇónµÄÖµ£®
£¨3£©Èçͼ2£¬ÈôEF=EC£¬ÇÒÔ²OÓë±ßCDÏàÇУ¬ÇónµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÔĶÁÏÂÁвÄÁÏ£¬È»ºó½â´ðÎÊÌ⣺ÔÚ»¯¼ò¶þ´Î¸ùʽʱ£¬ÓÐʱ»áÅöµ½ÐÎÈç$\frac{3}{\sqrt{5}}$¡¢$\frac{2}{\sqrt{3}+1}$ÕâÒ»Ààʽ×Ó£¬Í¨³£¿ÉÒÔÕâÑù½øÐл¯¼ò
·½·¨Ò»£º
$\frac{3}{\sqrt{5}}$=$\frac{3¡Á\sqrt{5}}{\sqrt{5}¡Á\sqrt{5}}$=$\frac{3\sqrt{5}}{5}$
$\frac{2}{\sqrt{3}+1}$=$\frac{2£¨\sqrt{3}-1£©}{£¨\sqrt{3}+1£©£¨\sqrt{3}-1£©}$=$\frac{2£¨\sqrt{3}-1£©}{£¨\sqrt{3}£©^{2}-{1}^{2}}$=$\sqrt{3}$-1£®ÕâÖÖ»¯¼ò²½Öè½Ð·ÖĸÓÐÀí»¯£®
·½·¨¶þ£º
$\frac{2}{\sqrt{3}+1}$»¹¿ÉÒÔÓÃÏÂÃæ·½·¨»¯¼ò
$\frac{2}{\sqrt{3}+1}$=$\frac{3-1}{\sqrt{3}+1}$=$\frac{£¨\sqrt{3}£©^{2}-{1}^{2}}{\sqrt{3}+1}$=$\frac{£¨\sqrt{3}+1£©£¨\sqrt{3}-1£©}{\sqrt{3}+1}$=$\sqrt{3}$-1£®
ÇëÓÃÉÏÃæµÄÁ½ÖÖ·½·¨»¯¼ò$\frac{2}{\sqrt{5}+\sqrt{3}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªÖ±Ïßy=$\frac{1}{2}$xÓëË«ÇúÏßy=$\frac{k}{x}$£¨k£¾0£©½»ÓÚA¡¢BÁ½µã£¬ÇÒµãAµÄºá×ø±êΪ4£®
£¨1£©ÇókµÄÖµ£»
£¨2£©¹ýÔ­µãOµÄÁíÒ»ÌõÖ±Ïßl½»Ë«ÇúÏßy=$\frac{k}{x}$£¨k£¾0£©ÓÚP¡¢QÁ½µã£¨PµãÔÚµÚÒ»ÏóÏ޵ĵãAµÄÉÏ·½£©£¬ÈôÓɵãA¡¢B¡¢P¡¢QΪ¶¥µã×é³ÉµÄËıßÐÎÃæ»ýΪ24£¬ÇóµãPµÄ×ø±ê£»
£¨3£©ÈôPÊÇË«ÇúÏßy=$\frac{k}{x}$£¨k£¾0£¬x£¾0£©ÉÏÒ»µã£¬·Ö±ð¹ýPÏòxÖᣬyÖá×÷´¹Ïߣ¬´¹×ã·Ö±ðΪM£¬N£¬ÊÔÎʵ±PÔںδ¦Ê±ËıßÐÎPMONµÄÖܳ¤×îС£¬×îСֵΪ¶àÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Èçͼ£¨1£©ÔÚRt¡÷ABCÖУ¬¡ÏC=90¡ã£¬AB=5cm£®BC=a cm£¬AC=3cm£¬ÇÒaÊÇ·½³Ìx2-£¨m-1£©x+m+4=0µÄ¸ù£®
£¨1£©ÇóaºÍmµÄÖµ£»
£¨2£©Èçͼ£¨2£©£¬ÓÐÒ»¸ö±ß³¤Îª$\frac{a}{2}$µÄµÈ±ßÈý½ÇÐÎDEF´ÓC³ö·¢£¬ÒÔ1cm/sµÄËÙ¶ÈÑØCB·½ÏòÒƶ¯£¬ÖÁ¡÷DEFÈ«²¿½øÈëÓë¡÷ABCΪֹ£¬ÉèÒƶ¯Ê±¼äΪxs£¬¡÷DEFÓë¡÷ABCÖصþ²¿·ÖÃæ»ýΪy£¬ÊÔÇó³öyÓëxµÄº¯Êý¹Øϵʽ²¢×¢Ã÷xµÄÈ¡Öµ·¶Î§£»
£¨3£©ÊÔÇó³ö·¢ºó¶à¾Ã£¬µãDÔÚÏ߶ÎABÉÏ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®Èç¹û·½³Ì2x-6=0£¬ÄÇô3x+8µÄÖµ£¨¡¡¡¡£©
A£®11B£®14C£®17D£®20

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸