分析 连接OB,由垂直定义得∠A+∠ADO=90°,由切线的性质可得∠CBO=90°,再由AO=BO,可得∠OAD=∠OBD,进而可证明CB=CD,设BC=x,则CD=x,
在Rt△OBC中利用勾股定理可求出x的长,问题得解.
解答 解:连接OB,
∵OA⊥OC,
∴∠A+∠ADO=90°,
∵CB是⊙O的切线,
∴∠OBC=90°,
∴∠OBD+∠CBD=90°,
∵AO=BO,
∴∠OAD=∠OBD,
∴∠OAD=∠OBD,
∴CB=CD,
设BC=x,则CD=x,
在Rt△OBC中,OB=OA=3,OC=OD+CD=x+1,
∵OB2+BC2=OC2,
∴32+x2=(x+1)2,
解得:x=4,
即BC的长为4,
故答案为:4.
点评 本题考查了切线的性质,勾股定理,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com