【题目】已知二次函数y=x2﹣2(k+1)x+k2﹣2k﹣3与x轴有两个交点.
(Ⅰ)求k取值范围;
(Ⅱ)当k取最小整数时,此二次函数的对称轴和顶点坐标;
(Ⅲ)将(Ⅱ)中求得的抛物线在x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分不变,得到一个新图象.请你求出新图象与直线y=x+m有三个不同公共点时m的值.
【答案】(Ⅰ)k>﹣1(Ⅱ)对称轴为:x=1.顶点坐标为(1,﹣4);(Ⅲ)m的值为1或
【解析】试题分析:(Ⅰ)由抛物线与x轴有两个交点可知△>0,从而可求得k的取值范围;
(Ⅱ)先求得k的最小整数值,从而可求得二次函数的解析式,结合函数解析式求此二次函数的对称轴和顶点坐标;
(Ⅲ)先根据函数解析式画出图形,然后结合图形找出抛物线与x轴有三个交点的情形,最后求得直线的解析式,从而可求得m的值.
试题解析:(Ⅰ)∵抛物线与x轴有两个交点,
∴△=4(k+1)2﹣4(k2﹣2k﹣3)=16k+16>0,
∴k>﹣1,
∴k的取值范围为k>﹣1;
(Ⅱ)∵k>﹣1,且k取最小的整数,
∴k=0,
∴y=x2﹣2x﹣3=(x﹣1)2﹣4,
∴对称轴为:x=1.顶点坐标为(1,﹣4);
(Ⅲ)翻折后所得新图象如图所示,
平移直线y=x+m知:直线位于l1和l2时,它与新图象有三个不同的公共点,
①当直线位于l1时,此时l1过点A(﹣1,0),
∴0=﹣1+m,即m=1;
②∵当直线位于l2时,此时l2与函数y=﹣x2+2x+3(﹣1≤x≤3)的图象有一个公共点,
∴方程x+m=﹣x2+2x+3,即x2﹣x﹣3+m=0有两个相等实根,
∴△=1﹣4(m﹣3)=0,即m=,
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,C是弧的中点,⊙O的切线BD交AC的延长线于点D,E是OB的中点,CE的延长线交切线BD于点F,AF交⊙O于点H,连接BH.
⑴求证:AC=CD.
⑵若OB=2,求BH的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形ABCD的顶点A(6,0),C(0,4)点D与坐标原点O重合,动点P从点O出发,以每秒2个单位的速度沿O﹣A﹣B﹣C的路线向终点C运动,连接OP、CP,设点P运动的时间为t秒,△CPO的面积为S,下列图象能表示t与S之间函数关系的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线交y轴于点A,交直线x=6于点B.
(1)填空:抛物线的对称轴为x=_________,点B的纵坐标为__________(用含a的代数式表示);
(2)若直线AB与x轴正方向所夹的角为45°时,抛物线在x轴上方,求的值;
(3)记抛物线在A、B之间的部分为图像G(包含A、B两点),若对于图像G上任意一点,总有≤3,求a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中,△ABC的三个顶点分别是A(﹣2,﹣2)、B(﹣4,﹣1)、C(﹣4,﹣4).
(Ⅰ)画出△ABC关于原点O或中心对称的△A1B1C1;
(Ⅱ)作出点A关于x轴的对称点A′,若把点A′向右平移a个单位长度后落在△A1B1C1的内部(不包括顶点和边).
①在图中画出点A′,并写出点A′坐标 .
②写出a的取值范围为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,AC是上半圆的弦,过点C作⊙O的切线DE交AB的延长线于点E,且于D,与⊙O交于点F.
(1)判断AC是否是∠DAE的平分线?并说明理由;
(2)连接OF与AC交于点G,当AG=GC=1时,求切线的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC 中,AB=AC,D 是直线 BC 上一点(不与点 B、C 重合),以 AD 为一边在 AD的右侧作△ADE,AD=AE,∠DAE=∠BAC,连接 CE.
(1)如图 1,当点 D 在线段 BC 上时,求证:△ABD≌△ACE;
(2)如图 2,当点 D 在线段 BC 上时,如果∠BAC=90°,求∠BCE 的度数;
(3)如图 3,若∠BAC=α,∠BCE=β.点 D 在线段 CB 的延长线上时,则α、β之间有怎样 的数量关系?并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶记录如下。(单位:km)
(1)在第几次记录时离A地最远,并求出最远距离。
(2)求收工时距A地多远?在A地的什么方向?
(3)若每千米耗油0.3升,问共耗油多少升?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等边三角形ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点.若AE=2,当EF+CF取得最小值时,∠ECF的度数为( )
A. 20° B. 25° C. 30° D. 45°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com