精英家教网 > 初中数学 > 题目详情
直线y=-
1
3
x+1
分别交x轴、y轴于A、B两点,△AOB绕点O按逆时针方向旋转90°后得到△COD,抛物线y=ax2+bx+c经过A、C、D三点.
(1)写出点A、B、C、D的坐标;
(2)求经过A、C、D三点的抛物线表达式,并求抛物线顶点G的坐标;
(3)在直线BG上是否存在点Q,使得以点A、B、Q为顶点的三角形与△COD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.
(1)A(3,0),B(0,1),C(0,3),D(-1,0);(4分)

(2)∵抛物线y=ax2+bx+c经过C点,
∴c=3.(1分)
又∵抛物线经过A,D两点,
9a+3b+3=0
a-b+3=0

解得
a=-1
b=2
(2分)
∴y=-x2+2x+3(1分)
∴y=-x2+2x+3=-(x-1)2+4,
∴顶点G(1,4).(1分)

(3)过点G作GH⊥y轴垂足为点H,
AB=
10
BG=
10

∵tan∠BAO=
1
3
,tan∠GBH=
1
3

∴∠BGH=∠BAO(1分)
∵∠BAO+∠ABO=90°,
∴∠BGH+∠ABO=90°,
∴∠GBA=90°,
∴∠ABQ=∠DOC=∠AOB(1分)
①当
OD
OC
=
BQ
BA
时,△ODC△BQA,
1
3
=
BQ
10

∴BQ=
10
3
(1分)
过点Q作QN⊥y轴,垂足为点N,设Q(x,y),
NQ
BQ
=
HG
BG
|x|
10
3
=
1
10
|x|=
1
3
x=±
1
3

∵tan∠GBH=
1
3

∴BN=1,
Q1(
1
3
,2)
Q2(-
1
3
,0)
(2分)
②同理可得:Q3(3,10),Q4(-3,-8).(2分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线C1:y=a(x+2)2-5的顶点为P,与x轴相交于A、B两点(点A在点B的左侧),点B的横坐标是1;
(1)求a的值;
(2)如图,抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,抛物线C3的顶点为M,当点P、M关于点O成中心对称时,求抛物线C3的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线与x轴交于A(x1,0),B(x2,0)两点,且x1>x2,与y轴交于点C(0,4),其中x1,x2是方程x2-2x-8=0的两个根.
(1)求这条抛物线的解析式;
(2)点P是线段AB上的动点,过点P作PEAC,交BC于点E,连接CP,当△CPE的面积最大时,求点P的坐标;
(3)探究:若点Q是抛物线对称轴上的点,是否存在这样的点Q,使△QBC成为等腰三角形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在同一坐标系内,二次函数的图象与两坐标轴分别交于点A(-1,0),点B(2,0)和点C(0,4),一次函数的图象与抛物线交于B,C两点.
(1)二次函数的解析式为______;
(2)当自变量x______时,两函数的函数值都随x增大而减小;
(3)当自变量x______时,一次函数值大于二次函数值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系中,给定以下五点A(-2,0)、B(1,0)、C(4,0)、D(-2,
9
2
)、E(0,-6).从这五点中选取三点,使经过这三点的抛物线满足对称轴平行于y轴.
我们约定:把经过三点A、E、B的抛物线表示为抛物线AEB.
(1)问符合条件的抛物线还有哪几条?不求解析式,请用约定的方法一一表示出来;
(2)在(1)中是否存在这样的一条抛物线,它与余下的两点所确定的直线不相交?如果存在,试求出抛物线及直线的解析式并证明;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,其中A点坐标为(-1,0).点C(0,5),D(1,8)在抛物线上,M为抛物线的顶点.
(1)抛物线的解析式为______;
(2)△MCB的面积为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,将抛物线y=x2沿x轴正方向平移3个单位得到抛物线l,直线y=-2.
(1)求抛物线l的解析式;
(2)点A是抛物线l上一点,点B是直线y=-2上一点,是否存在等腰△OAB?若存在,求点A,B两点的坐标;若不存在,说明理由;
(3)若将上题中的“沿x轴正方向平移3个单位”改为“沿x轴正方向平移n个单位”,其它条件不变,探究上题(2)中的问题.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知Rt△AOB中,∠AOB=90°,OA=3cm,OB=4cm,以O为坐标原点建立如图所示的直角坐标系,设P、Q分别为AB、OB边上的动点,他们同时分别从点A、O向B点匀速移动,移动的速度都是1厘米/秒,设P、Q移动时间为t秒(0≤t≤4)
(1)试用t的代数式表示P点的坐标;
(2)求△OPQ的面积S(cm2)与t(秒)的函数关系式;当t为何值时,S有最大值,并求出S的最大值;
(3)试问是否存在这样的时刻t,使△OPQ为直角三角形?如果存在,求出t的值,如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2-2x+c经过直线y=x-3与坐标轴的两个交点A、B,此抛物线与x轴的另一个交点为C,抛物线的顶点为D.
(1)求此抛物线的解析式;
(2)⊙M是过A、B、C三点的圆,连接MC、MB、BC,求劣弧CB的长;(结果用精确值表示)
(3)点P为抛物线上的一个动点,求使S△APC:S△ACD=5:4的点P的坐标.(结果用精确值表示)

查看答案和解析>>

同步练习册答案
关 闭