精英家教网 > 初中数学 > 题目详情
精英家教网如图,在矩形ABCD中,点E对角线是BD上一点,作∠CEF=∠CBD,过点C作CF⊥CE交EF于F,连接DF.求证:
(1)
CE
CB
=
CF
CD

(2)BD⊥DF.
分析:(1)根据题干条件可知∠CEF=∠CBD,∠BCD=∠ECF=90°,于是可以证得△BCD∽△ECF,即可证得
CE
CB
=
CF
CD
,(2)设EF和CD的交点为O,根据△BCD∽△ECF,求得∠BDC=∠EFC,又知∠DOE=∠COF,即可证明△DOE∽△COF,于是可得
OE
OC
=
OD
OF
,进而得到
OE
OD
=
OC
OF
,又知∠DOF=∠EOC,所以证得△ECO∽△DOF,然后得到∠CFO=∠CDF,最后求得∠BDF=90°.
解答:精英家教网证明:(1)∵过点C作CF⊥CE交EF于F,
∴∠ECF=90°,
∵∠CEF=∠CBD,∠BCD=90°,
∴△BCD∽△ECF,
CE
CB
=
CF
CD


(2)设EF和CD的交点为O,
∵△BCD∽△ECF,
∴∠BDC=∠EFC,
∵∠DOE=∠COF,
∴△DOE∽△COF,
OE
OC
=
OD
OF

OE
OD
=
OC
OF

∵∠DOF=∠EOC,
∴△ECO∽△DOF,
∴∠CFO=∠CDF,
∴∠EDC+∠CDF=∠BDC+∠DBC=90°,
∴∠BDF=90°,
∴BD⊥DF.
点评:本题主要考查相似三角形的判定与性质和矩形的性质的知识点,解答本题的关键是熟练掌握相似三角形的判定和性质定理,本题稍微有点难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在矩形ABCD中,AB=4cm,BC=8cm,点P从点A出发以1cm/s的速度向点B运动,点Q从点B出发以2cm/s的速度向点C运动,设经过的时间为xs,△PBQ的面积为ycm2,则下列图象能反映y与x之间的函数关系的是(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD、AC分别交于点E、F,且∠ACB=∠DCE精英家教网
(1)判断直线CE与⊙O的位置关系,并说明理由;
(2)若AB=
2
,BC=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,在矩形 ABCD中,AB=30cm,BC=60cm.点P从点A出发,沿A→B→C→D路线向点D匀速运动,到达点D后停止;点Q从点D出发,沿 D→C→B→A路线向点A匀速运动,到达点A后停止.若点P、Q同时出发,在运动过程中,Q点停留了1s,图②是P、Q两点在折线AB-BC-CD上相距的路程S(cm)与时间t(s)之间的函数关系图象.
(1)请解释图中点H的实际意义?
(2)求P、Q两点的运动速度;
(3)将图②补充完整;
(4)当时间t为何值时,△PCQ为等腰三角形?请直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AB=6,则AD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,AB=4,BC=6,E为线段BC上的动点(不与B、C重合).连接DE,作EF⊥DE,EF与AB交于点F,设CE=x,BF=y.
(1)求y与x的函数关系式;
(2)x为何值时,y的值最大,最大值是多少?
(3)若设线段AB的长为m,上述其它条件不变,m为何值时,函数y的最大值等于3?

查看答案和解析>>

同步练习册答案