精英家教网 > 初中数学 > 题目详情

【题目】在同一平面内,将两个全等的等腰直角三角形摆放在一起,为公共顶点,,若固定不动,绕点旋转,与边的交点分别为(点不与点重合,点不与点重合).

(1)求证:

(2)在旋转过程中,试判断等式是否始终成立,若成立,请证明;若不成立,请说明理由.

【答案】(1)详见解析;(2)成立.

【解析】

1)由图形得∠BAE=BAD+45°,由外角定理,得∠CDA=BAD+45°,可得∠BAE=CDA,根据∠B=C=45°,证明两个三角形相似;
2)将△ACE绕点A顺时针旋转90°至△ABH位置,证明△EAD≌△HAD转化DEEC,使所求线段集中在RtBHD中利用勾股定理解决.

1)∵∠BAE=BAD+45°,∠CDA=BAD+45°
∴∠BAE=CDA
又∠B=C=45°
∴△ABE∽△DCA
2)成立.如图,将△ACE绕点A顺时针旋转90°至△ABH位置,

CE=BHAE=AH,∠ABH=C=45°,旋转角∠EAH=90°
连接HD,在△EAD和△HAD中,


∴△EAD≌△HADSAS).
DH=DE
又∠HBD=ABH+ABD=90°
BD2+BH2=HD2,即BD2+CE2=DE2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,,点是线段的一个三等分点,以点为圆心,为半径的圆交于点,交于点,连接

(1)求证:的切线;

(2)上的一动点,连接.

①当 时,四边形是菱形;

②当 时,四边形是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB90°AC4BC3.直径为5的⊙O分别与ACBC相切于点FE,与AB交于点MN,过点OOPMNP,则OP的长为(  )

A.1B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,矩形ABCD的对角线AC经过坐标原点O,矩形的边分别平行于坐标轴,点B在函数y=k≠0x>0)的图像上,点D的坐标为(-4,1),则K的值为(

A.B.C.4D.-4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=ax2+bx+c过点A0,2)。

1)若点(-0)也在该抛物线上,求ab满足的关系式;

2)若点A为抛物线顶点,且抛物线过点(1,1)。

①求抛物线的解析式;

②若点M是抛物线上异于点A的一个动点,点P与点O关于点A对称,直线MP交抛物线与另一个点N,点N’是抛物线上点N关于对称轴的对称点,直线PN’与抛物线交于点E,求证:直线EN恒过点O

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:有两个相邻内角和等于另两个内角和的一半的四边形称为半四边形,这两个角的夹边称为对半线.

1)如图1,在对半四边形中,,求的度数之和;

2)如图2为锐角的外心,过点的直线交于点,求证:四边形是对半四边形;

3)如图3,在中,分别是上一点,的中点,,当为对半四边形的对半线时,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC中,∠C=90°,AC=BC=,将ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接CB,则CB的长为(  )

A. B. C. D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在淮河的右岸边有一高楼,左岸边有一坡度的山坡,点与点在同一水平面上,在同一平面内.某数学兴趣小组为了测量楼的高度,在坡底处测得楼顶的仰角为,然后沿坡面上行了米到达点处,此时在处测得楼顶的仰角为,求楼的高度.(结果保留整数)(参考数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线yax2+bx3a0)与直线ykx+ck0)相交于A(﹣10)、B2,﹣3)两点,且抛物线与y轴交于点C

1)求抛物线的解析式;

2)求出CD两点的坐标

3)在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,求出点P的坐标.

查看答案和解析>>

同步练习册答案