精英家教网 > 初中数学 > 题目详情
心理学研究发现,一般情况下,在一节45分钟的课中,学生的注意力随学习时间的变化而变化.开始学习时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y随时间x(分钟)的变化规律如下图所示(其中AB、BC分别为线段,CD为双曲线的一部分).
(1)开始学习后第5分钟时与第35分钟时相比较,何时学生的注意力更集中?为什么?
(2)某些数学内容的课堂学习大致可分为三个环节:即“教师引导,回顾旧知--自主探索,合作交流--总结归纳,巩固提高”.其中重点环节“自主探索,合作交流”这一过程一般需要30分钟才能完成,为了确保效果,要求学习时的注意力指标数不底于40.请问这样的课堂学习安排是否合理?并说明理由.
(1)设yAB=k1x+b,把(0,20),(10,50)代入函数解析式解得yAB=3x+20(0≤x≤10),
由图象直接得到yBC=50(10≤x≤30),
设yCD=
k
x
,把(30,50)代入函数解析式解得yCD=
1500
x
(30≤x≤45);
把x=5代入yAB=3x+20,得yAB=35,
把x=35代入yCD=
1500
x
,得yCD=
300
7

因为yAB≤yCD
所以第35分钟时学生的注意力更集中;

(2)不合理.
因为10+30=40分钟,把x=40代入yCD=
1500
x

解得yCD=
75
2
<40,
所以这样的课堂学习安排不合理.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,在平面直角坐标系中,直线y=-3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线y=
k
x
(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图是某反比例函数的图象,则此反比例函数的解析式是(  )
A.y=
2
x
(x<0)
B.y=-
2
x
(x<0)
C.y=
1
2x
(x<0)
D.y=-
1
2x
(x<0)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

若反比例函数y=
6
x
与一次函数y=kx+b的图象都经过一点A(a,2),另有一点B(2,0)在一次函数y=kx+b的图象上.
(1)写出点A的坐标;
(2)求一次函数y=kx+b的解析式;
(3)过点A作x轴的平行线,过点O作AB的平行线,两线交于点P,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线y=2x-6与反比例函数y=
k
x
(x>0)
的图象交于点A(4,2),与x轴交于点B.
(1)求k的值及点B的坐标;
(2)在x轴上是否存在点C,使得AC=AB?若存在,求出点C的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图(1),直线y=x与双曲线y=
k
x
交于点A、C,且OA=OC=
2

(1)求点A的坐标和k的值;
(2)以AC为对角线作矩形ABCD交x轴正半轴于B,交x轴负半轴于D,求点B、D坐标;
(3)如图(2),在(2)的条件下,点B1、D1分别在x轴正、负半轴上移动,AD1交y轴于E,若∠B1AD1=∠BAD,则四边形AB1,OE的面积S是否会发生变化?若不变求S值,若变化求S的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

我们容易发现:反比例函数的图象是一个中心对称图形.你可以利用这一结论解决问题.如图,在同一直角坐标系中,正比例函数的图象可以看作是:将x轴所在的直线绕着原点O逆时针旋转α度角后的图形.若它与反比例函数y=
3
x
的图象分别交于第一、三象限的点B,D,已知点A(-m,O)、C(m,0).
(1)直接判断并填写:不论α取何值,四边形ABCD的形状一定是______;
(2)①当点B为(p,1)时,四边形ABCD是矩形,试求p,α,和m的值;
②观察猜想:对①中的m值,能使四边形ABCD为矩形的点B共有几个?(不必说理)
(3)试探究:四边形ABCD能不能是菱形?若能,直接写出B点的坐标,若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)兄弟二人分吃一碗饺子,每人吃饺子的个数如表:

①写出兄吃饺子数y与弟吃饺子数x之间的函数关系式(不要求写xy的取值范围).
②虽然当弟吃的饺子个数增多时,兄吃的饺子数(y)在减少,但y与x是成反例吗?
(2)水池中有水若干吨,若单开一个出水口,水流速v与全池水放光所用时t如表:

①写出放光池中水用时t(小时)与放水速度v(吨/小时)之间的函数关系.
②这是一个反比例函数吗?
③与(1)的结论相比,可见并非反比例函数有可能“函数值随自变量增大而减小”,反之,所有的反比例函数都是“函数值随自变量的增大而减小吗?这个问题,你可以提前探索、尝试,也可以预习下一课时”反比例函数的图象和性质,也可以等到下一节课我们共同解决.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

甲、乙两家商场进行促销活动,甲商场采用“买200减100”的促销方式,即购买商品的总金额满200元但不足400元,少付100元;满400元但不足600元,少付200元;…,乙商场按顾客购买商品的总金额打6折促销.
(1)若顾客在甲商场购买了510元的商品,付款时应付多少钱?
(2)若顾客在甲商场购买商品的总金额为x(400≤x<600)元,优惠后得到商家的优惠率为p(p=
优惠金额
购买商品的总金额
),写出p与x之间的函数关系式,并说明p随x的变化情况;
(3)品牌、质量、规格等都相同的某种商品,在甲乙两商场的标价都是x(200≤x<400)元,你认为选择哪家商场购买商品花钱较少?请说明理由.

查看答案和解析>>

同步练习册答案