精英家教网 > 初中数学 > 题目详情

【题目】【阅读】
如图1,在平面直角坐标系xOy中,已知点A(a,0)(a>0),B(2,3),C(0,3).过原点O作直线l,使它经过第一、三象限,直线l与y轴的正半轴所成角设为θ,将四边形OABC的直角∠OCB沿直线l折叠,点C落在点D处,我们把这个操作过程记为FZ[θ,a].

(1)【理解】
若点D与点A重合,则这个操作过程为FZ[];
(2)【尝试】
若点D恰为AB的中点(如图2),求θ;

(3)经过FZ[45°,a]操作,点B落在点E处,若点E在四边形0ABC的边AB上,求出a的值;若点E落在四边形0ABC的外部,直接写出a的取值范围;
(4)【探究】
经过FZ[θ,a]操作后,作直线CD交x轴于点G,交直线AB于点H,使得△ODG与△GAH是一对相似的等腰三角形,直接写出FZ[θ,a].

【答案】
(1)45°;3
(2)

解:如答图1所示,若点D恰为AB的中点,连接CD并延长交x轴于点F.证明△BCD≌△AFD,进而得到△OCD为等边三角形,则θ=30°;


(3)

解:经过FZ[45°,a]操作,点B落在点E处,则点D落在x轴上,AB⊥直线l,

如答图2所示:

若点E在四边形0ABC的边AB上,

由折叠可知,OD=OC=3,DE=BC=2.

∵AB⊥直线l,θ=45°,

∴△ADE为等腰直角三角形,

∴AD=DE=2,

∴OA=OD+AD=3+2=5,

∴a=5;

由答图2可知,当0<a<5时,点E落在四边形0ABC的外部.


(4)

解:FZ[30°,2+ ],FZ[60°,2+3 ].

如答图3、答图4所示.


【解析】解:(1)【理解】
若点D与点A重合,由折叠性质可知,OA=OC=3,θ= ∠AOC=45°,
∴FZ[45°,3].
【考点精析】通过灵活运用翻折变换(折叠问题),掌握折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,某办公大楼正前方有一根高度是15米的旗杆ED,从办公楼顶端A测得旗杆顶端E的俯角α是45°,旗杆底端D到大楼前梯坎底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1: ,则大楼AB的高度约为(  )(精确到0.1米,参考数据: ≈1.41, ≈1.73, ≈2.45)

A.30.6
B.32.1
C.37.9
D.39.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列这些复杂的图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们中每一个图案都可以由一个“基本图案”通过连续旋转得来,旋转的角度是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】RtABC中,∠A = 3C = 90,AB = 3,点Q在边AB上且BQ =,过QQFBCAC于点F,点P在线段QF上,过PPDACAB于点D,PEABBC于点E,当P到△ABC的三边的距离之和为3时,PD + PE + PF =_________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx(a>0)经过原点O和点A(2,0).
(1)写出抛物线的对称轴与x轴的交点坐标;
(2)点(x1 , y1),(x2 , y2)在抛物线上,若x1<x2<1,比较y1 , y2的大小;
(3)点B(﹣1,2)在该抛物线上,点C与点B关于抛物线的对称轴对称,求直线AC的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把下列各式因式分解

(1)

(2)

(3)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90°,AC=BC,点D在边AB上,连接CD,将线段CD绕点C顺时针旋转90°至CE位置,连接AE.
(1)求证:AB⊥AE;
(2)若BC2=ADAB,求证:四边形ADCE为正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,若二次函数y= x2+bx+c的图象与x轴交于A(﹣2,0),B(3,0)两点,点A关于正比例函数y= x的图象的对称点为C.

(1)求b、c的值;
(2)证明:点C在所求的二次函数的图象上;
(3)如图②,过点B作DB⊥x轴交正比例函数y= x的图象于点D,连结AC,交正比例函数y= x的图象于点E,连结AD、CD.如果动点P从点A沿线段AD方向以每秒2个单位的速度向点D运动,同时动点Q从点D沿线段DC方向以每秒1个单位的速度向点C运动.当其中一个点到达终点时,另一个点随之停止运动,连结PQ、QE、PE.设运动时间为t秒,是否存在某一时刻,使PE平分∠APQ,同时QE平分∠PQC?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若关于x的一元二次方程ax2+3x-1=0有两个不相等的实数根,则a的取值范围是.

查看答案和解析>>

同步练习册答案