精英家教网 > 初中数学 > 题目详情
在学习了投影知识后,小明同学想能否利用投影的知识来测量斜坡的坡角呢?经过思考小明和他的小组成员采用了以下测量步骤:
(1)如图,在平地和斜坡上各直立一根等长的标杆AB、DE(均与地面垂直),AB在平地上的影长为BC,
(2)在同一时刻分别测量平地上标杆AB的影长BC,斜坡上标杆DE的影长EF,
问题:
(1)请画出在同一时刻标杆DE在山坡上的影长EF(不需尺规作图,只要作出适当的标记)
(2)若标杆AB、DE的长均为2米,测得AB的影长BC为1米,DE的影长EF为2米,求斜坡的坡角α(精确到1°)
【答案】分析:(1)首先连接AC,然后点D作DF∥AC,则可知EF即为所求影长;
(2)首先过点E作EM∥BC交DF于点M,过点M作MN⊥EF于点N,根据题意易得△DEF是等腰三角形,然后由三角函数的定义,可得MN:FN=EM:DE=1:2,则可设MN=x,由勾股定理,可得方程:12=(2-2x)2+x2,继而可求得sinα==,则可求得答案.
解答:解:(1)如图:
①连接AC,
②过点D作DF∥AC,
则EF即为所求影长;

(2)过点E作EM∥BC交DF于点M,过点M作MN⊥EF于点N,
根据题意得:EM=BC=1,DE=EF=2,
∴∠D=∠EFM,∠MEF=α,
∵在Rt△DEN中,tan∠D==
∴在Rt△FMN中,tan∠MFN==
设MN=x,则FN=2x,
∴EN=EF-FN=2-2x,
在Rt△EMN中,EM2=EN2+MN2
即12=(2-2x)2+x2
解得:x1=,x2=1(舍去),
∴MN=
∴sinα==
∴α≈37°.
答:斜坡的坡角α为:37°.
点评:此题考查了坡度坡角问题,考查了等腰三角形的性质、勾股定理、平行线的性质以及锐角三角函数的定义.此题难度较大,注意掌握方程思想与数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在学习了投影知识后,小明同学想能否利用投影的知识来测量斜坡的坡角呢?经过思考小明和他的小组成员采用了以下测量步骤:
(1)如图,在平地和斜坡上各直立一根等长的标杆AB、DE(均与地面垂直),AB在平地上的影长为BC,
(2)在同一时刻分别测量平地上标杆AB的影长BC,斜坡上标杆DE的影长EF,
问题:
(1)请画出在同一时刻标杆DE在山坡上的影长EF(不需尺规作图,只要作出适当的标记)
(2)若标杆AB、DE的长均为2米,测得AB的影长BC为1米,DE的影长EF为2米,求斜坡的坡角α(精确到1°)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在学习了投影知识后,小明同学想能否利用投影的知识来测量斜坡的坡角呢?经过思考小明和他的小组成员采用了以下测量步骤:
(1)如图,在平地和斜坡上各直立一根等长的标杆AB、DE(均与地面垂直),AB在平地上的影长为BC,
(2)在同一时刻分别测量平地上标杆AB的影长BC,斜坡上标杆DE的影长EF,
问题:
(1)请画出在同一时刻标杆DE在山坡上的影长EF(不需尺规作图,只要作出适当的标记)
(2)若标杆AB、DE的长均为2米,测得AB的影长BC为1米,DE的影长EF为2米,求斜坡的坡角α(精确到1°)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在学习了投影知识后,小刚和小亮利用“同一时刻太阳光下物长与影长成比例”的原理测得某棵大树的高为8米,当他们又一次经过这棵大树时,发现大树的影子落在了有个圆弧形小桥的路上,小刚突发奇想:能不能测出这个圆弧形小桥所在圆的半径呢?请你也加入他们的行列,测出小桥的半径吧!

(1)如图,AB为小亮、BC为他的影子,DE为大树,请你在图中画出这棵大树的影子(影子的另一个端点用F表示),尺规作图,保留作图痕迹;
(2)在(1)的基础上,已知小亮的身高AB为1.6米,测得小亮的影长BC为2.4米,同一时刻测得EG的长为2.5米,HF的长为1.5米,又测得小桥的拱高(弦GH的中点与数学公式的中点之间的距离)为2米,求圆弧形小桥所在圆的半径.

查看答案和解析>>

科目:初中数学 来源:2012年江苏省无锡市宜兴外国语学校中考数学一模试卷(解析版) 题型:解答题

在学习了投影知识后,小明同学想能否利用投影的知识来测量斜坡的坡角呢?经过思考小明和他的小组成员采用了以下测量步骤:
(1)如图,在平地和斜坡上各直立一根等长的标杆AB、DE(均与地面垂直),AB在平地上的影长为BC,
(2)在同一时刻分别测量平地上标杆AB的影长BC,斜坡上标杆DE的影长EF,
问题:
(1)请画出在同一时刻标杆DE在山坡上的影长EF(不需尺规作图,只要作出适当的标记)
(2)若标杆AB、DE的长均为2米,测得AB的影长BC为1米,DE的影长EF为2米,求斜坡的坡角α(精确到1°)

查看答案和解析>>

同步练习册答案