【题目】如图,在平面立角坐标系中,直线与轴,轴分别交于点、点,点在轴的负半轴上,若将沿直线折叠,点恰好落在轴正半轴上的点处.
(1)直接写出的长_________;
(2)求直线的函数表达式;
(3)求点和点的坐标;
(4)轴上是否存在一点,使得?若存在,直接写出点的坐标;若不存在,请说明理由.
【答案】(1)(2)(3),(4)存在,或
【解析】
(1)由点、点,写出OA、OB的长,根据勾股定理即可求出AB的长;
(2)由点、点,利用待定系数法即可求出直线的函数表达式;
(3)根据折叠的性质和勾股定理,即可求得点和点的坐标;
(4)设P点的坐标为(0,x)根据列方程即可
(1)∵点、点,
∴OA=3,OB=4,
∴;
(2)设直线AB的解析式为y=kx+b,
∵直线AB经过点、点;
∴可列方程组为,解得k=,b=4;
∴直线AB的解析式为;
(3)设点C的坐标为(0,y),∴OC=﹣y,
根据折叠的性质可得AB=AD,BC=CD,
∴CD=5,OD=8
∴D点坐标为(8,0)
∴BC=CD=4-y,
∵在直角三角形Rt△OCD中,,
即,解得y=﹣6
∴C的坐标为(0,﹣6);
(4)存在;理由如下:
①当P点在y轴正半轴上,设P点坐标为(0,y),根据题意得PB=y﹣4,
∵
∴,
∴可列方程为,解得y=12;
∴(0,12)
②当P点在y轴负半轴上,设P点坐标为(0,y),根据题意得PB=4-y,
∵
∴
∴可列方程为,解得y=﹣4,
∴P(0,﹣4).
∴P点坐标为或.
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc<0;②a-b+c>0;③ 2a+b=0;④b2-4ac>0 ⑤a+b+c>m(am+b)+c,(m>1的实数),其中正确的结论有()
A. 1个 B. 2 C. 3 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程x2﹣(2k+1)x+k2+1=0.
(1)若方程有两个不相等的实数根,求k的取值范围;
(2)若方程的两根恰好是一个矩形两邻边的长,且k=2,求该矩形的对角线L的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在现今“互联网+”的时代,密码与我们的生活已经紧密相连,密不可分.而诸如“”、生日等简单密码又容易被破解,因此利用简单方法产生一组容易记忆的密码就很有必要了.有一种用“因式分解”法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如将多项式因式分解的结果为,当时,,,,此时可以得到数字密码或等.
(1)根据上述方法,当,时,对于多项式分解因式后可以形成哪些数字密码(写出四个即可)?
(2)将多项式因式分解成三个一次式的乘积后,利用题目中所示的方法,当时可以得到密码,求,的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】正方形网格中(网格中的每个小正方形边长是1),△ABC的顶点均在格点上,请在所给的直角坐标系中解答下列问题:
(1)试作出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;点B1的坐标为 ;
(2)作△ABC关于原点O成中心对称的△A2B2C2;点B2的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这个分式为“和谐分式”.
(1)下列分式:①;②;③;④.其中是“和谐分式”的是 (填写序号即可);
(2)若a为正整数,且为“和谐分式”,请写出a的值 ;
(3)在分式运算中,我们也会用到判断和谐分式时所需要的知识,请你用所学知识,化简
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A是一次函数y=x(x≥0)图象上一点,过点A作x轴的垂线l,B是l上一点(B在A上方),在AB的右侧以AB为斜边作等腰直角三角形ABC,反比例函数y= (x>0)的图象过点B,C,若△OAB的面积为5,则△ABC的面积是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了进一步改善环境,郑州市今年增加了绿色自行车的数量,已知A型号的自行车比B型号的自行车的单价低30元,买8辆A型号的自行车与买7辆B型号的自行车所花费用相同.
(1)A,B两种型号的自行车的单价分别是多少?
(2)若购买A,B两种自行车共600辆,且A型号自行车的数量不多于B型号自行车的一半,请你给出一种最省钱的方案,并求出该方案所需要的费用.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com