精英家教网 > 初中数学 > 题目详情
16.在△ABC中,AB=AC,∠BAC=90°,点D是AC上一点,连接BD,过点A作AE⊥BD于E,交BC于F.
(1)如图1,若AB=4,CD=1,求AE的长;
(2)如图2,点G时AE上一点,连接CG,若BE=AE+AG,求证:CG=$\sqrt{2}$AE;
(3)如图3,点P是AC上一点,连接FP,若AP=CD,求证:∠ADB=∠CPF.

分析 (1)由已知条件得出AD=3,由勾股定求出BD,由三角形的面积求出AE即可;
(2)在BE上截取EH=AE,连接AH,则AG=BH,由SAS证明△ABH≌△CAG,得出AH=CG,在Rt△AEH中,EH=AE,即可得出结论;
(3)过C作CM⊥AC交AF延长线于M,由(2)知∠EAD=∠ABD,即∠MAC=∠ABD,由ASA证明△ABD≌△ACM,得出CM=AD,∠ADB=∠CMF,证出CP=CM,CF=∠MCF=45°,由SAS证明△CFP≌△CFM,得出对应角相等,即可得出结论.

解答 (1)解:∵AB=AC=4,CD=1,
∴AD=3,由勾股定理得:BD=$\sqrt{A{B}^{2}+A{D}^{2}}$=$\sqrt{{4}^{2}+{3}^{2}}$=5,
∵Rt△ABD的面积=$\frac{1}{2}$AB•AD=$\frac{1}{2}$AE•BD,
∴$\frac{1}{2}$×4×3=$\frac{1}{2}$×AE×5,
解得:AE=$\frac{12}{5}$;
(2)证明:在BE上截取EH=AE,连接AH,如图2所示:
∵BE=AE+AG,
∴AG=BH,
∵∠BAD=∠AED=90°,∠ADE=∠ADB,
∴△ADE∽△ADB,
∴∠EAD=∠ABD,
即∠CAG=∠ABH,
在△ABH和△CAG中,$\left\{\begin{array}{l}{AB=AC}\\{∠ABH=∠CAG}\\{BH=AG}\end{array}\right.$,
∴△ABH≌△CAG(SAS),
∴AH=CG,
在Rt△AEH中,EH=AE,
∴AH=$\sqrt{2}$AE,
∴CG=$\sqrt{2}$AE;
(3)证明:过C作CM⊥AC交AF延长线于M,如图3所示:
由(2)知∠EAD=∠ABD,
即∠MAC=∠ABD,
在△ABD和△ACM中,$\left\{\begin{array}{l}{∠MAC=∠ABD}\\{AC=AB}\\{∠ACM=∠BAD=90°}\end{array}\right.$,
∴△ABD≌△ACM(ASA),
∴CM=AD,∠ADB=∠CMF,
∵AP=CD,
∴AD=CP,
∴CP=CM,
∵Rt△ABC中,AB=AC,
∴∠ACB=45°,
∵∠ACM=90°,
∴∠PCF=∠MCF=45°,
在△CFP和△CFM中,$\left\{\begin{array}{l}{CP=CM}\\{∠PCF=∠MCF}\\{CF=CF}\end{array}\right.$,
∴△CFP≌△CFM(SAS),
∴∠CPF=∠CMF,
∴∠ADB=∠CPF.

点评 本题考查了勾股定理、相似三角形的判定与性质、全等三角形的判定与性质、等腰直角三角形的判定与性质等知识;本题综合性强,有一定难度,特别是(3)中,需要两次证明三角形全等才能得出结论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.正比例函数y=k1x与一次函数y=k2x+b的图象如图所示,它们的交点A的坐标为(3,4),且OB=10.
(1)求这两个函数的表达式;
(2)求△OAB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图①,在△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长.(提示:如图②所示分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点分别为E、F,延长EB、FC相交于G点)
(1)求证:四边形AEGF是正方形;
(2)设AD=x,利用勾股定理,建立关于x的方程模型,求出x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.若n≠0,且n是方程x2-mx+n=0的根,则m-n=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.已知在平面直角坐标系中,点Q的坐标为(4,0),点P是直线y=-$\frac{1}{2}$x+3上在第一象限内的一点.设△OPQ的面积为S.
(1)设点P的坐标为(x,y),用含y的代数式表示S,并写出y的取值范围.
(2)设点P的坐标为(x,y),用含x的代数式表示S,并写出x的取值范围.
(3)当点P的坐标为何值时,△OPQ的面积等于直线y=-$\frac{1}{2}$x+3与坐标轴围成的三角形面积的一半?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,E、F是正方形ABCD的边AD上有两个动点,满足AE=DF,连接CF交BD于G,连接BE交AG于点H,若正方形的边长为3,则线段DH长度的最小值是$\frac{3}{2}$($\sqrt{5}$-1).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如图,直线a与直线b被直线c所截,b⊥c,垂足为点A,∠1=70°,若使直线b与直线a平行,则可将直线b绕着点A顺时针至少旋转20度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,直线y=-2x+b与x轴,y轴分别相交于A、B两点,点B的坐标为(0,4),点C的坐标为(-4,0).
(1)直线AB的解析式为y=-2x+4.
(2)点A的坐标为(2,0),AC的长为6.
(3)若动点P(x,y)在直线AB上,则△PAC中AC边上的高=|-2x+4|(用含x的式子表示),其中x的取值范围为x≠2.
(4)若△PAC的面积为6,试确定点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,在直角坐标系中,已知直线y=-$\frac{1}{2}$x+4与y轴交于A点,与x轴交于B点,C点的坐标为(-2,0).
(1)求证:直线AB⊥AC;
(2)求经过A,B,C三点的抛物线l的解析式和对称轴;
(3)在直线AB上方的抛物线l上,是否存在一点P,使直线AB平分∠PBC?
若存在,请求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案