【题目】如图,在正方形ABCD的上方作等边三角形ADE,连接BE,CE.
(1)求证:△ABE≌△DCE;
(2)连接AC,设AC与BE交于点F,求∠BFC的度数.
【答案】(1)证明见解析;(2)∠BFC=60°.
【解析】
(1)利用等边三角形的性质和正方形的性质可得∠BAE=∠CDE=150°,由“SAS”可证△ABE≌△DCE;
(2)首先得出∠ABE=∠AEB=15°,由外角性质可求解.
证明:( 1)∵四边形ABCD为正方形,
∴AB=AD=CD,∠BAD=∠ADC=90°,∠BAC=45°,
∵三角形ADE为正三角形,
∴AE=AD=DE,∠EAD=∠EDA=60°,
∴∠BAE=∠CDE=150°,
在△BAE和△CDE中,
∴△ABE≌△DCE(SAS);
(2)∵AB=AD,AD=AE,
∴AB=AE,
∴∠ABE=∠AEB,
又∵∠BAE=150°,
∴∠ABE=∠AEB=15°,
∴∠BFC=∠ABE+∠BAC=60°.
科目:初中数学 来源: 题型:
【题目】某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且利润率不得高于.经市场调查,每天的销售量(千克)与每千克售价(元)满足一次函数关系,部分数据如下表:
售价(元/千克) | 45 | 50 | 55 |
销售量(千克) | 110 | 100 | 90 |
(1)求与之间的函数表达式,并写出自变量的范围;
(2)设每天销售该商品的总利润为(元),求与之间的函数表达式(利润=收入-成本),并求出售价为多少元时每天销售该商品所获得最大利润,最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,隧道的截面由抛物线和长方形OABC构成,长方形的长OA是12m,宽OC是4m.按照图中所示的平面直角坐标系,抛物线可以用y=﹣x2+bx+c表示.在抛物线型拱璧上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m.那么两排灯的水平距离最小是( )
A.2mB.4mC.mD.m
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC在平面直角坐标系中,∠ACB=90°,AC=BC,A的坐标是(0,m)(m<0),点C的坐标是(2,0),点B在x轴上方.
(1)如图1所示,若点B在y轴上,则m的值是 ;
(2)如图2所示,BC与y轴交于点D.
①若m=﹣6,求点B的坐标;
②若y轴恰好平分∠BAC,求OD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c的图象经过点A(﹣1,0)、点B(3,0)、点C(4,y1),若点D(x2,y2)是抛物线上任意一点,有下列结论:
①二次函数y=ax2+bx+c的最小值为﹣4a;
②若﹣1≤x2≤4,则0≤y2≤5a;
③若y2>y1,则x2>4;
④一元二次方程cx2+bx+a=0的两个根为﹣1和
其中正确结论的是_____(填序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图数轴的A、B、C三点所表示的数分别为a、b、c.若|a﹣b|=3,|b﹣c|=5,且原点O与A、B的距离分别为4、1,则关于O的位置,下列叙述何者正确?( )
A. 在A的左边 B. 介于A、B之间 C. 介于B、C之间 D. 在C的右边
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC,以AC为直径的⊙O交AB于点D,点E为弧AD的中点,连接CE交AB于点F,且BF=BC.
(1)求证:BC是⊙O的切线;
(2)若⊙O的半径为2,=,求CE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点B在函数y=x图象上,点A在x轴的正半轴上,等腰直角三角形BCD的顶点C在AB上,点D在函数y=第一象限的图象上若△OAB与△BCD面积的差为2,则k的值为( )
A.8B.4C.2D.1
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com