精英家教网 > 初中数学 > 题目详情

已知半径为r的⊙O1与半径为R的⊙O2外离,直线DE经过O1切⊙O2于点E并交⊙O1于点A和点D,直线CF经过O2切⊙O1于点F并交⊙O2于点B和点C,连接AB、CD,
(1)[以下ⅰ、ⅱ两小题任选一题]
(ⅰ)求四边形ABCD的面积
(ⅱ)求证:A、B、E、F四点在同一个圆上
(2)求证:AB∥DC.

证明:(1)连接O1F,O2E,AF,BE,
∵DE,CF为切线,
∴∠O1F02=∠O2EO1=90°,∴O1、F、O2、E四点共圆,
∴∠AO1F=∠EO2B,
又∵O1A=O1F,O2E=O2B,
∴根据三角形外角定理,得∠EAF=∠EBF,
所以A、E、B、F四点共圆;


(2)∵A、E、B、F四点共圆,
∴根据同弧所对的圆周角相等,连接EF,则∠ABF=∠AEF,
同(2)法可证F、C、E、D四点共圆,则∠DEF=∠DCF,
而∠AEF和∠DEF为同一角,则∠ABF=∠DCF,
所以AB∥CD.
设DC与O1,O2的另一交点分别为M、N,连接AM、BN,连接O1O2
∵AB∥CD

(ⅰ)设DC与O1,O2的另一交点分别为M、N,连接AM、BN,连接O1O2
∵AB∥CD
∴四边形ABCD是梯形
又O1、O2是圆心,AD、BC是直径
∴O1O2梯形ABCD的中位线,AM⊥BC,BN⊥BC
∴O1F=r,AD=2r;O2E=R,BC=2R
∴O1O2=(AB+CD),O1O2∥BC
∴∠O1O2F=∠C
∵CF、DE分别是⊙O1、⊙O2的切线
∴O1F⊥O2F,O2E⊥O1E
∴Rt△BCN∽Rt△O1O2F
∴O1O2:BC=O1F:BN
∴O1O2•BN=BC•O1F=2Rr
∵AB∥BC,BN⊥BC
∴BN是梯形ABCD的高
∴S梯形=(AB+CD)•AM=O1O2×BN=2Rr
分析:(1)连接O1F,O2E,AF,BE,根据切线的性质得∠O1F02=O2EO1=90°,可证O1、F、O2、E四点共圆,得出∠AO1F=∠EO2B,再利用等腰三角形的性质,外角的性质证明∠EAF=∠EBF,判断A、E、B、F四点共圆;
(2)由(1)的结论可证∠ABF=∠AEF,同理可证F、C、E、D四点共圆,得到∠DEF=∠DCF,从而有∠ABF=∠DCF,证明结论.
点评:本题考查了四点共圆的判定与性质,切线的性质.关键是根据切线的性质,逐步判断四点共圆,利用四点共圆的性质证明结论.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知半径为1的⊙O1与x轴交于A,B两点,OM为⊙O1的切线,切点为M,圆心O1的坐标为(2,0),二次函数y=-x2+bx+c的图象经过A,B两点.
(1)求二次函数的解析式;
(2)求切线OM的函数解析式;
(3)线段OM上存在一点P,使得以P,O,A为顶点的三角形与△OO1M相似.请问有几个符合条件的点P并分别求出它们的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知半径为6的⊙O1与半径为4的⊙O2相交于点P、Q,且∠O1PO2=120°,点A为⊙O1上异于点P、Q的动点,直线AP与⊙O2交于点B,直线O1A与直线O2B交于点M.
(1)如图1,求∠AMB的度数;
(2)当点A在⊙O1上运动时,是否存在∠AMB的度数不同于(1)中结论的情况?若存在,请在图2中画出一种该情况的示意图,并求出∠AMB的度数;若不存在,请在图2中再画出一个符合题意的图形,并证明∠AMB的度数同于(1)中结论;
(3)当点A在⊙O1上运动时,若△APO1与△BPO2相似,求线段AB的长.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

17、已知半径为r的⊙O1与半径为R的⊙O2外离,直线DE经过O1切⊙O2于点E并交⊙O1于点A和点D,直线CF经过O2切⊙O1于点F并交⊙O2于点B和点C,连接AB、CD,
(1)[以下ⅰ)、ⅱ)两小题任选一题]
(ⅰ)求四边形ABCD的面积
(ⅱ)求证:A、B、E、F四点在同一个圆上
(2)求证:AB∥DC.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•成华区二模)如图,已知半径为R的⊙O1的直径AB和弦CD交于点M,点A为
CD
的中点.半径为r的⊙O2是过点A、C、M的圆,设点A到CD的距离为d.
(1)求证:r2=
1
2
Rd

(2)连接BD,若AC=5,O1M=
7
6
,求BD的长;
(3)过点O1作EF∥AC,交CD于点E,交过点B的切线于点F.连接AF,交CD于点G,求证:MG=CG.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知半径为1的⊙O1与x轴交于A,B两点,OM为⊙O1的切线,切点为M,圆心O1的坐标为(2,0),二次函数y=-x2+bx+c的图象经过A,B两点.
(1)求二次函数的解析式.
(2)求出图中阴影部分的面积.
(3)求切线OM的函数解析式.
(4)线段OM上是否存在一点P,使得以P,O,A为顶点的三角形与△OO1M相似?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案