精英家教网 > 初中数学 > 题目详情
如图,如果把△ABC的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,则线段A′B与线段AC的关系是(  )
A.垂直B.相等C.平分D.平分且垂直
D

试题分析:先根据题意画出图形,再利用勾股定理结合网格结构即可判断线段A′B与线段AC的关系:
如图,将点A先向下平移3格,再向左平移1格到达A′点,连接A′B,与线段AC交于点O.
∵A′O=OB=,AO=OC=2
∴线段A′B与线段AC互相平分,
又∵∠AOA′=45°+45°=90°,
∴A′B⊥AC,
∴线段A′B与线段AC互相垂直平分.
故选D.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC与△BAD中,AD与BC相交于点E,∠C=∠D,EA=EB.
求证:BC=AD.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

把一条12个单位长度的线段分成三条线段,其中一条线段长为4个单位长度,另两条线段长都是单位长度的整数倍.
(1)不同分法得到的三条线段能组成多少个不全等的三角形?用尺规作出这些三角形(用给定的单位长度,不写作法,保留作图痕迹);
(2)求出(1)中所作三角形外接圆的周长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,矩形ABCD中,AD=2AB,E是AD边上一点, (为大于2的整数),连接BE,作BE的垂直平分线分别交AD、BC于点F,G,FG与BE的交点为O,连接BF和EG.
(1)试判断四边形BFEG的形状,并说明理由;
(2)当为常数),时,求FG的长;
(3)记四边形BFEG的面积为,矩形ABCD的面积为,当时,求的值.(直接写出结果,不必写出解答过程)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题


【问题提出】
学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.
【初步思考】
我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.

【深入探究】
第一种情况:当∠B是直角时,△ABC≌△DEF.
(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据       ,可以知道Rt△ABC≌Rt△DEF.
第二种情况:当∠B是钝角时,△ABC≌△DEF.
(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.
第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.
(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)
(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若       ,则△ABC≌△DEF.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点A、C、B、D在同一条直线上,BE∥DF,∠A=∠F,AB=FD.
求证:AE=FC.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列长度的三条线段,能组成等腰三角形的是(   )
A.1,1,2B.2,2,5C.3,3,5D.3,4,5

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,RtΔABC中,AB=9,BC=6,∠B=90°,将ΔABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为(   )
A.B.C.4D.5

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

平行四边形的两条对角线长分别为8和10,则其中每一边长的取值范围是           

查看答案和解析>>

同步练习册答案