精英家教网 > 初中数学 > 题目详情
5.已知函数y=(x+1)2-4.
(1)若将抛物线先向右平移2个单位长度,再向上平移4个单位长度,求得到的抛物线的解析式;
(2)该抛物线经过怎样的平移能经过原点?
(3)当x取何值时,函数值大于0?当x取何值时,函数值小于0?

分析 (1)根据平移规律“上加下减”直接得到平移后抛物线的解析式;
(2)设经过原点的抛物线解析式为:y=(x+1)2-4+h,把原点坐标代入该解析式求得h的值;
(3)根据抛物线的性质解答.

解答 解:(1)将抛物线y=(x+1)2-4向右平移2个单位长度,再向上平移4个单位长度后得到抛物线的解析式为:y=(x+1-2)2-4+4,即y=(x-1)2

(2)设经过原点的抛物线解析式为:y=(x+1)2-4+h,
把(0,0)代入,得
0=(0-1)2-4+h,
解得h=3,
则该抛物线解析式为:y=(x+1)2-1;
即把抛物线y=(x+1)2-4向上平移3个单位后的抛物线经过原点;

(3)y=(x+1)2-4=(x+3)(x-1),则该抛物线与x轴的交点横坐标分别是-3,1,且该抛物线的开口方向向上,
所以当x<-3或x>1时,y>0;
当-3<x<1时,y<0.

点评 主要考查了函数图象的平移,抛物线与坐标轴的交点坐标的求法,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.会利用方程求抛物线与坐标轴的交点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.求|m-1|+|m-3|+|m+5|+|m+6|的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.计算:-$\frac{1}{4}$+(-$\frac{5}{6}$)+$\frac{2}{3}$-(+$\frac{1}{2}$)-4$\frac{1}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图所示,分别以六边形的顶点为圆心,以2个单位长度为半径画圆,则图中阴影部分的面积之和为多少平方单位?(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.有一条长7.2m的木料,做成如图所示的窗框,当窗框的宽最大为多少时,这个窗户的面积为2m2?(不考虑木料加工时的损耗和中间木框所占的面积)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.在同一个坐标系中,画出函数y1=2x2,y2=2(x-2)2与y3=2(x+2)2的图象,并说明y2,y3的图象与y1=2x2的图象的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,AC=AE,∠C=∠E,∠BAC=∠DAE.求证:
(1)△ABC≌△ADE;
(2)△ABF≌△ADG.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.已知α,β是方程x2-2009x+3=0的两个根,则(α2-2010α+3)(β2-2010β+3)=3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.计算:
(1)6-24÷(-3);
(2)-$\frac{3}{4}$×12+1÷(-$\frac{1}{5}$).

查看答案和解析>>

同步练习册答案