精英家教网 > 初中数学 > 题目详情
9、若x+3>0,两边同时减去3,得
x>-3
,根据是
不等式基本性质1
分析:由不等式的性质1,得x>-3.
解答:解:∵x+3>0,∴x>-3,
故答案为x>-3,不等式的性质1.
点评:本题考查了不等式的性质:
(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.
(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.
(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

下面的不等式的解法对吗?若不对,请改正.
-4x-6>2x+3
解:移项,得-4x-2x>3+6.
合并同类项,得-6x>9.
两边同除以-6,得x>-
23

查看答案和解析>>

科目:初中数学 来源: 题型:

探索研究
(1)观察一列数2,4,8,16,32,…,发现从第二项开始,每一项与前一项之比是一个常数,这个常数是
 
;根据此规律,如果an(n为正整数)表示这个数列的第n项,那么a18=
 
,an=
 

(2)如果欲求1+3+32+33+…+320的值,可令S=1+3+32+33+…+320
将①式两边同乘以3,得
 

由②减去①式,得S=
 

(3)用由特殊到一般的方法知:若数列a1,a2,a3,…,an,从第二项开始每一项与前一项之比的常数为q,则an=
 
(用含a1,q,n的代数式表示),如果这个常数q≠1,那么a1+a2+a3+…+an=
 
(用含a1,q,n的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)观察一列数a1=3,a2=9,a3=27,a4=81,…,发现从第二项开始,每一项与前一项之比是一个常数,这个常数是
3
3
;根据此规律,如果an(n为正整数)表示这个数列的第n项,那么a6=
36
36
,an=
3n
3n
;(可用幂的形式表示)
(2)如果想要求1+2+22+23+…+29的值,可令S10=1+2+22+23+…+29①将①式两边同乘以2,得
2S10=2+22+23+…+29+210
2S10=2+22+23+…+29+210
②,由②减去①式,得S10=
210-1
210-1

(3)若(1)中数列共有30项,设S30=3+9+27+81+…+a30,请利用上述规律和方法计算S30的值.
(4)设一列数1,2,4,8,…,2n-1的和为Sn,则Sn的值为
2n-1
2n-1

查看答案和解析>>

科目:初中数学 来源: 题型:

下列命题的条件是什么?结论是什么?
(1)两直线平行,同位角相等.
(2)若∠A=∠B,∠B=∠C,则∠A=∠C.
(3)不等式的两边同乘一个负数,不等号方向改变.

查看答案和解析>>

科目:初中数学 来源: 题型:

课本第93页,第17题是这样的一道题:“如果代数式5a+3b的值为-4,那么代数式2(a+b)+4(2a+b)的值是多少?”我们可以这样来解:
原式=2a+2b+8a+4b=10a+6b.
把式子5a+3b=-4两边同乘以2,得10a+6b=-8.
仿照上面的解题方法,完成下面的两题:
(1)若a2+a=0,则2a2+2a-2012的值为
-2012
-2012

(2)若a2+a=0,a-b=-3,则a2+b的值为
3
3

(3)已知a-b=-3,求3(a-b)-a+b+7的值.

查看答案和解析>>

同步练习册答案