精英家教网 > 初中数学 > 题目详情
如图,在直角梯形ABCD中,AB∥DC,∠D=90o,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5).

(1)求证:△ACD∽△BAC;
(2)求DC的长;
(3)设四边形AFEC的面积为y,求y 关于t的函数关系式,并求出y的最小值.
(1)由CD∥AB,得∠DCA=∠CAB,加上一组直角,即可证得所求的三角形相似;(2);(3)y的最小值为19

试题分析:(1)由CD∥AB,得∠DCA=∠CAB,加上一组直角,即可证得所求的三角形相似;
(2)在Rt△ABC中,由勾股定理可求得AC的长,根据(1)题所得相似三角形的比例线段,即可求出DC的长;
(3)分析图象可知:四边形AFEC的面积可由△ABC、△BEF的面积差求得,分别求出两者的面积,即可得到y、t的函数关系式,进而可根据函数的性质及自变量的取值范围求出y的最小值.
(1)∵CD∥AB
∴∠BAC=∠DCA 
又∵AC⊥BC,∠ACB=90o 
∴∠D="∠ACB=" 90o   
∴△ACD∽△BAC;
(2) 
∵△ACD∽△BAC
 ,即,解得:
(3)过点E作AB的垂线,垂足为G,

 
∴△ACB∽△EGB 
 即,解得 
 = =
故当t=时,y的最小值为19
点评:三角形相似是考察的重点,考生要学会分析三角形相似的基本性质,动点和图形的结合是常考点.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在正方形ABCD中,E是BC上的一点,连接AE,作BF⊥AE,垂足为H,交CD于F,作CG∥AE,交BF于G.求证:
(1)CG=BH;
(2)FC2=BF•GF;
(3)=

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知OAOBOA=4,OB=3,以AB为边作矩形ABCD,使AD,过点DDE垂直OA的延长线且交于点E.(1)求证:△OAB∽△EDA

(2)当为何值时,△OAB与△EDA全等?请说明理由;并求出此时BD两点的距离.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC∽△ADE,AB="30" cm,BD="18" cm,BC="20" cm,∠BAC=75°,∠ABC=40°.

(1)求∠AED的度数.
(2)求DE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在正方形网格上,若使△ABC与△PBD相似,则点P应在
A.P1B.P2
C.P3D.P4

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如果 ,则k的值为______。
A.B.C.1D.-1

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,边长12的正方形ABCD中,有一个小正方形EFGH,其中E、F、G分别在AB、BC、FD上. 若BF=3,则小正方形的边长为

A.        B.        C. 5      D. 6

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列命题正确的是(    )
A.所有等腰三角形都相似B.所有的矩形都相似
C.所有的菱形一定相似D.有一对锐角相等的直角三角形一定相似

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题


【问题提出】我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小,即要比较代数式M、N的大小,只要作出它们的差M-N,若M-N>0,则M>N;若M-N=0,则M=N;若M-N<0,则M<N.
【问题解决】如图1,把边长为a+b(a≠b)的大正方形分割成两个边长分别是a、b的小正方形及两个矩形,试比较两个小正方形面积之和M与两个矩形面积之和N的大小.

解:由图可知:

∵a≠b,∴>0.
∴M-N>0.∴M>N.
【类比应用】(1)已知:多项式M =2a2-a+1 ,N =a2-2a .
试比较M与N的大小.
(2)已知:如图2,锐角△ABC (其中BC为a ,AC为 b,
AB为c)三边满足a <b < c ,现将△ABC 补成长方形,
使得△ABC的两个顶点为长方形的两个端点,第三个顶点落
在长方形的这一边的对边上。
 
①这样的长方形可以画     个;
②所画的长方形中哪个周长最小?为什么?
【拓展延伸】 已知:如图,锐角△ABC (其中BC为a,AC为b,AB为c)三边满足a <b < c ,画其BC边上的内接正方形EFGH , 使E、F两点在边BC上,G、H分别在边AC、AB上,同样还可画AC、AB边上的内接正方形,问哪条边上的内接正方形面积最大?为什么?

查看答案和解析>>

同步练习册答案