【题目】如图,在直角坐标平面中,O为原点,点A的坐标为(20,0),点B在第一象限内,BO=10,sin∠BOA=.
(1)在图中,求作△ABO的外接圆;(尺规作图,不写作法但需保留作图痕迹)
(2)求点B的坐标与cos∠BAO的值;
(3)若A,O位置不变,将点B沿轴正半轴方向平移使得△ABO为等腰三角形,请直接写出平移距离.
【答案】(1)见解析;(2)cos∠BAO=;(3)当点B沿x轴正半轴方向平移2个单位、(2+12)个单位,或(2﹣8)个单位时,△ABO为等腰三角形.
【解析】试题分析:(1)作OB,AB的垂直平分线交于一点M,以点M为圆心,MA为半径画圆,则圆M即为所求;
(2)如图,作BH⊥OA,垂足为H,在Rt△OHB中,由BO=10,sin∠BOA=,得到BH=6,OH=8,求出点B的坐标为(8,6),根据OA=20,OH=8,求出AH=12,在Rt△AHB中,由BH=6,得到AB==6,求出cos∠BAO==;
(3)①当BO=AB时,由AO=20,得到OH=10,点B沿x轴正半轴方向平移2个单位;
②当AO=AB′时,由AO=20,得到AB′=20,过B′作B′N⊥x轴,由点B的坐标为(8,6),得到B′N=6,AN==2.求得点B沿x轴正半轴方向平移(2+12)个单位,
③当AO=OB″时,由AO=20,得到OB″=20,过B″作B″P⊥x轴.由B的坐标为(8,6),得到B″P=6,OP==2,点B沿x轴正半轴方向平移(2﹣8)个单位.
解:(1)如图所示:
(2)如图,作BH⊥OA,垂足为H,
在Rt△OHB中,∵BO=10,sin∠BOA=,
∴BH=6,
∴OH=8,∴点B的坐标为(8,6),
∵OA=20,OH=8,∴AH=12,
在Rt△AHB中,∵BH=6,
∴AB==6
∴cos∠BAO==;
(3)①当BO=AB时,∵AO=20,∴OH=10,
∴点B沿x轴正半轴方向平移2个单位,
②当AO=AB′时,∵AO=20,∴AB′=20,
过B′作B′N⊥x轴,
∵点B的坐标为(8,6),
∴B′N=6,∴AN==2.
∴点B沿x轴正半轴方向平移(2+12)个单位,
③当AO=OB″时,
∵AO=20,
∴OB″=20,
过B″作B″P⊥x轴.
∵B的坐标为(8,6),
∴B″P=6,
∴OP==2,
∴点B沿x轴正半轴方向平移(2﹣8)个单位,
综上所述当点B沿x轴正半轴方向平移2个单位、(2+12)个单位,或(2﹣8)个单位时,△ABO为等腰三角形.
科目:初中数学 来源: 题型:
【题目】如图所示,四边形是矩形,点、的坐标分别为, .点是线段上的动点(与端点、不重合).过点作直线交折线于点.当点在线段上时,若矩形关于直线的对称图形为四边形,试探究与矩形的重叠部分的面积是否发生变化?若不变,求出该重叠部分的面积;若改变,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4.将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.
(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB上,此时三角板旋转的角度为度;
(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;
(3)在上述直角三角板从图1旋转到图3的位置的过程中,若三角板绕点O按15°每秒的速度旋转,当直角三角板的直角边ON所在直线恰好平分∠AOC时,求此时三角板绕点O的运动时间t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图象与x轴相交于A、B两点,与y轴相交于点C,点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.
(1)求D点的坐标;
(2)根据图象写出使一次函数值大于二次函数值的x的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com