【题目】用配方法解下列方程:
(1)x2+2x-8=0 (2)x2+12x-15=0
(3)x2-4x=16 (4)x2=x+56
【答案】(1);(2);(3);(4)
【解析】试题分析:(1)常数项移到等号的右边,两边都加上一次项系数一半的平方,配成完全平方式,然后开平方即可得出答案;
(2)常数项移到等号的右边,两边都加上一次项系数一半的平方,配成完全平方式,然后开平方即可得出答案;
(3)两边都加上一次项系数一半的平方,配成完全平方式,然后开平方即可得出答案;
(4)整理成一般式,常数项移到等号的右边后,两边都加上一次项系数一半的平方,配成完全平方式,然后开平方即可得出答案.
试题解析:(1)x2+2x-8=0,
x2+2x=8,
x2+2x+12=8+12,即(x+1)2=9,
则x+1=±3,
x=1±3,
即;
(2)x2+12x-15=0,
x2+12x=15,
x2+12x+62=15+62,即(x+6)2=51,
则x+6=±,
x=6±,
即;
(3)x2-4x=16,
x2-4x+22=16+22,即(x-2)2=20,
则x-2=±,
x=2±,
;
(4)x2=x+56,
x2-x+2=56+2,
(2=,
则x-=±,
x-=±+,
即.
科目:初中数学 来源: 题型:
【题目】定义:如果一个数的平方等于,记为,这个数叫做虚数单位。那么和我们所学的实数对应起来就叫做复数,表示为(为实数),叫这个复数的实部, 叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似。
例如计算:
(1)填空: =_________, =____________.
(2)填空:①_________; ②_________ 。
(3)若两个复数相等,则它们的实部和虚部必须分别相等,完成下列问题:已知, ,( 为实数),求的值。
(4)试一试:请利用以前学习的有关知识将化简成的形式。
(5)解方程:x2 - 2x +4 = 0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两人分别骑自行车和摩托车,从同一地点沿相同的路线前往距离80km的某地,图中l1,l2分别表示甲、乙两人离开出发地的距离s(km)与行驶时间t(h)之间的函数关系.请根据图象解答下列问题:
(1)甲、乙两人谁到达目的地较早?早多长时间?
(2)分别求甲、乙两人行驶过程中s与t的函数关系式;
(3)试确定当两辆车都在行驶途中(不包括出发地和目的地)时,t的取值范围;并在这一时间段内,求t为何值时,摩托车行驶在自行车前面?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向依次不断地移动,每次移动一个单位,得到点A1(0,1)、A2(1,1)、A3(1,0)、A4(2,0),…,那么点A2019的坐标为( )
A. (1008,1)B. (1009,1)C. (1009,0)D. (1010,0)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图的方格中,每个小方格都是边长为1的正方形,△ABC的三个顶点都在格点上;
(1)建立适当的平面直角坐标系,使A(﹣2,﹣1),C(1,﹣1),写出B点坐标;
(2)在(1)的条件下,将△ABC向右平移4个单位再向上平移2个单位,在图中画出平移后的△A′B′C′,并分别写出A′、B′、C′的坐标;
(3)求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,长方形ABCD的边BC平行于x轴,如果点A的坐标为(-1,2),点C的坐标为(3,-3),把一条长为2019个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按如图所示的逆时针方向绕在长方形ABCD的边上,则细线的另一端所在位置的点的坐标是( )
A. (-1,1)B. (-1,-1)C. (2,-2)D. (2,2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为4的菱形ABCD中,BD=4,E、F分别是AD、CD上的动点(包含端点),且AE+CF=4,连接BE、EF、FB.
(1)试探究BE与BF的数量关系,并证明你的结论;
(2)求EF的最大值与最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com