精英家教网 > 初中数学 > 题目详情
已知抛物线y=ax2+bx+c(a>0)的对称轴为x=-1,交x轴的一个交点为(x1,0),且0<x1<1,则下列结论:
①b>0,c<0;②a-b+c>0;③b<a;④3a+c>0;⑤9a-3b+c>0
其中正确的命题有
 
.(请填入正确的序号)
分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
解答:精英家教网解:根据题意,得到该抛物线的图象(如图所示)
①∵二次函数y=ax2+bx+c的对称轴x=-
b
2a
=-1<0,a>0
∴b>0;
∵抛物线与y轴交于负半轴,
∴c<0;
故本选项正确;

②根据图示,知
当x=-1时,y<0,即a-b+c<0;故本选项错误;

③∵二次函数y=ax2+bx+c的对称轴x=-
b
2a
=-1,
∴b=2a;
又∵a>0,
∴b-a=a>0,
∴b>a;故本选项错误;

④由图象知,当x=1时,y>0,即a+b+c>0;
又∵b=2a,
∴3a+c>0;故本选项正确;

⑤根据图象知,当x=-3时,y>0,即9a-3b+c>0;故本选项正确;
综上所述,其中正确的命题有①④⑤;
故答案是:①④⑤.
点评:本题考查了二次函数y=ax2+bx+c图象与系数的关系.系数符号的确定由抛物线开口方向、对称轴和抛物线与坐标轴的交点确定.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0),B(0,-4),C(2,-4)三点,且精英家教网与x轴的另一个交点为E.
(1)求抛物线的解析式;
(2)用配方法求抛物线的顶点D的坐标和对称轴;
(3)求四边形ABDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=ax2和直线y=kx的交点是P(-1,2),则a=
 
,k=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

2、已知抛物线y=ax2+bx+c的开口向下,顶点坐标为(2,-3),那么该抛物线有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知抛物线y=ax2+bx+c(其中b>0,c<0)的顶点P在x轴上,与y轴交于点Q,过坐标原点O,作OA⊥PQ,垂足为A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•广州)已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为B,且抛物线不经过第三象限.
(1)使用a、c表示b;
(2)判断点B所在象限,并说明理由;
(3)若直线y2=2x+m经过点B,且于该抛物线交于另一点C(
ca
,b+8
),求当x≥1时y1的取值范围.

查看答案和解析>>

同步练习册答案