【题目】如图,铁路MN和公路PQ在点O处交汇,∠QON=30°,在点A处有一栋居民楼,AO=320m,如果火车行驶时,周围200m以内会受到噪音的影响,那么火车在铁路MN上沿ON方向行驶时.
(1)居民楼是否会受到噪音的影响?请说明理由;
(2)如果行驶的速度为72km/h,居民楼受噪音影响的时间为多少秒?
【答案】(1)居民楼会受到噪音的影响;(2)影响时间应是12秒.
【解析】
(1)作AC⊥ON于C,利用含30度的直角三角形三边的关系得到AC=AO=160,则点A到MN的距离小200,从而可判断学校会受到影响;
(2)以A为圆心,100为半径画弧交MN于B、D,如图,则AB=AD=200,利用等腰三角形的性质得BC=CD,接下来利用勾股定理计算出BC=120,所以BD=2BC=240,然后利用速度公式计算出学校受到的影响的时间.
(1)如图:过点A作AC⊥ON,
∵∠QON=30°,OA=320米,
∴AC=160米,
∵AC<200,
∴居民楼会受到噪音的影响;
(2)以A为圆心,200m为半径作⊙A,交MN于B、D两点,
即当火车到B点时直到驶离D点,对居民楼产生噪音影响,
∵AB=200米,AC=160米,
∴由勾股定理得:BC=120米,由垂径定理得BD=2BC=240米,
∵72千米/小时=20米/秒,
∴影响时间应是:240÷20=12秒.
科目:初中数学 来源: 题型:
【题目】油井A位于油库P南偏东75°方向,主输油管道AP=12km,一新建油井B位于点P的北偏东75°方向,且位于点A的北偏西15°方向.
(1)求∠PBA;
(2)求A,B间的距离;
(3)要在AP上选择一个支管道连接点C,使从点B到点C处的支输油管道最短,求这时BC的长.(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,AB=BC=6,∠B=60°,∠D=90°,连结AC.动点P从点B出发,沿BC以每秒1个单位的速度向终点C运动(点P不与点B、C重合).过点P作PQ⊥BC交AB或AC于点Q,以PQ为斜边作Rt△PQR,使PR∥AB.设点P的运动时间为t秒.
(1)当点Q在线段AB上时,求线段PQ的长.(用含t的代数式表示)
(2)当点R落在线段AC上时,求t的值.
(3)设△PQR与△ABC重叠部分图形的面积为S平方单位,求S与t之间的函数关系式.
(4)当点R到C、D两点的距离相等时,直接写出t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(12分)如图,在平面直角坐标系中,直线与轴、轴分别交于A、B两点,动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O运动;同时,动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A运动,当其中一点到达终点时,另一点也随之停止运动.设点P运动的时间为t(秒).
(1)直接写出A、B两点的坐标.
(2)当△APQ与△AOB相似时,求t的值.
(3)设△APQ的面积为S(平方单位),求S与t之间的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校九年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:
(1)样本容量是______________,并补全直方图;
(2)该年级共有学生800人,请估计该年级在这天里发言次数不少于12次的人数;
(3)已知A组发言的学生中恰有1位女生,E组发言的学生中有2位男生,现从A组与E组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好都是男生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,点E、F分别在直线AB、CD上,点G、H在两直线之间,线段EF与GH相交于点O,且有∠AEF+∠CFE=180°,∠AEF﹣∠1=∠2,则在图中相等的角共有( )
A. 5对B. 6对C. 7对D. 8对
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】老师在讲完乘法公式的多种运用后,要求同学们运用所学知识解答:求代数式的最小值?同学们经过交流、讨论,最后总结出如下解答方法:
解:
∵,
当时,的值最小,最小值是0,
∴
当时,的值最小,最小值是1,
∴的最小值是1.
请你根据上述方法,解答下列各题
(1)当x=______时,代数式的最小值是______;
(2)若,当x=______时,y有最______值(填“大”或“小”),这个值是______;
(3)若,求的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(10分)已知:如图,在平面直角坐标系xOy中,直线AB分别与x、y轴交于点B、A,与反比例函数的图象分别交于点C、D,CE⊥x轴于点E,tan∠ABO=,OB=4,OE=2.
(1)分别求出该反比例函数和直线AB的解析式;
(2)求出交点D坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.
(1)求平均每天销售量箱与销售价元/箱之间的函数关系式.
(2)当每箱苹果的销售价为多少元时,可以使获得的销售利润w最大?最大利润是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com