精英家教网 > 初中数学 > 题目详情
1.如图,E、F是正方形ABCD的边AD上有两个动点,满足AE=DF,连接CF交BD于G,连接BE交AG于点H,若正方形的边长为3,则线段DH长度的最小值是$\frac{3}{2}$($\sqrt{5}$-1).

分析 根据正方形的性质可得AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,然后利用“边角边”证明△ABE和△DCF全等,根据全等三角形对应角相等可得∠1=∠2,利用“SAS”证明△ADG和△CDG全等,根据全等三角形对应角相等可得∠2=∠3,从而得到∠1=∠3,然后求出∠AHB=90°,取AB的中点O,连接OH、OD,根据直角三角形斜边上的中线等于斜边的一半可得OH=$\frac{1}{2}$AB=1,利用勾股定理列式求出OD,然后根据三角形的三边关系可知当O、D、H三点共线时,DH的长度最小.

解答 解:在正方形ABCD中,AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,
在△ABE和△DCF中,
$\left\{\begin{array}{l}{AB=CD}\\{∠BAD=∠CDA}\\{AE=DF}\end{array}\right.$,
∴△ABE≌△DCF(SAS),
∴∠1=∠2,
在△ADG和△CDG中,
$\left\{\begin{array}{l}{AD=CD}\\{∠ADG=∠CDG}\\{DG=DG}\end{array}\right.$,
∴△ADG≌△CDG(SAS),
∴∠2=∠3,
∴∠1=∠3,
∵∠BAH+∠3=∠BAD=90°,
∴∠1+∠BAH=90°,
∴∠AHB=180°-90°=90°,
取AB的中点O,连接OH、OD,
则OH=AO=$\frac{1}{2}$AB=$\frac{3}{2}$,
在Rt△AOD中,OD=$\sqrt{A{O}^{2}+A{D}^{2}}$=$\frac{3}{2}$$\sqrt{5}$,
根据三角形的三边关系,OH+DH>OD,
∴当O、D、H三点共线时,DH的长度最小,
最小值=OD-OH=$\frac{3}{2}$($\sqrt{5}$-1).
故答案为:$\frac{3}{2}$($\sqrt{5}$-1).

点评 本题考查了正方形的性质,全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,三角形的三边关系,确定出DH最小时点H的位置是解题关键,也是本题的难点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.解不等式组,并把它的解集在数轴上表示出来:
(1)$\left\{\begin{array}{l}{-3x-1>3}\\{2x+1>3}\end{array}\right.$
(2)$\left\{\begin{array}{l}{3(x-2)+8>2x}\\{\frac{x+1}{3}≤x-\frac{x-1}{2}}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.某校七年级举办数学竞赛,有120人参加,竞赛平均分66分,及格学生的平均分为76分,不及格学生的平均分为52分.求这次竞赛中及格的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.已知m是方程x2=x+1的一个根,则关于x的方程x2+2xm2-2xm-1=0有一个根是(  )
A.$\sqrt{2}$B.-$\sqrt{2}$C.-1+$\sqrt{2}$D.1-$\sqrt{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.在△ABC中,AB=AC,∠BAC=90°,点D是AC上一点,连接BD,过点A作AE⊥BD于E,交BC于F.
(1)如图1,若AB=4,CD=1,求AE的长;
(2)如图2,点G时AE上一点,连接CG,若BE=AE+AG,求证:CG=$\sqrt{2}$AE;
(3)如图3,点P是AC上一点,连接FP,若AP=CD,求证:∠ADB=∠CPF.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,已知正方形ABCD的边长为2,E是BC边上的动点,BF⊥AE交CD于点F,垂足为G,连结CG.则CG的最小值为$\sqrt{5}$-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.设直线y=ax+b与抛物线y=x2的交点A,B的横坐标分别为3,-1.
(1)求a,b的值;
(2)设抛物线的顶点为C,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.请你任意写出一个经过(0,3)点,且y随x的增大而减小的一次函数的解析式y=-x+3(答案不唯一).(写出一种即可)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.在平面直角坐标系xOy中,A(t,0),B(t+$\sqrt{3}$,0),对于线段AB和x轴上方的点P给出如下定义:当∠APB=60°时,称点P为AB的“等角点”.
(1)若t=-$\frac{\sqrt{3}}{2}$,在点C(0,$\frac{3}{2}$),D($\frac{\sqrt{3}}{2}$,1),E(-$\frac{\sqrt{3}}{2}$,$\frac{3}{2}$)中,线段AB的“等角点”是C、D;
(2)直线MN分别交x轴、y轴于点M、N,点M的坐标是(6,0),∠OMN=30°.
①线段AB的“等角点”P在直线MN上,且∠ABP=90°,求点P的坐标;
②在①的条件下,过点B作BQ⊥PA,交MN于点Q,求∠AQB的度数;
③若线段AB的所有“等角点”都在△MON内部,则t的取值范围是1-$\frac{\sqrt{3}}{2}$<t<4-$\sqrt{3}$.

查看答案和解析>>

同步练习册答案