精英家教网 > 初中数学 > 题目详情

【题目】阅读下面材料:

小伟遇到这样一个问题:如图1,在△ABC(其中∠BAC是一个可以变化的角)中,AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值.

小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B为旋转中心将△ABP逆时针旋转60°得到△A′BC,连接A′A,当点A落在A′C上时,此题可解(如图2).

(1)请你回答:AP的最大值是

(2)参考小伟同学思考问题的方法,解决下列问题:

如图3,等腰Rt△ABC.边AB=4,P为△ABC内部一点,请写出求AP+BP+CP的最小值长的解题思路.

提示:要解决AP+BP+CP的最小值问题,可仿照题目给出的做法.把△ABP绕B点逆时针旋转60,得到△A′BP′.

①请画出旋转后的图形

②请写出求AP+BP+CP的最小值的解题思路(结果可以不化简).

【答案】(1)6;(2)作图见解析;,思路见解析

【解析】

试题分析:(1)由旋转得到△A′BC,有△A′BA是等边三角形,当点A′A、C三点共线时,A′C=AA′+AC,最大即可;

(2)由旋转得到结论PA+PB+PC=P1A1+P1B+PC,只有,A1、P1、P、C四点共线时,(P1A+P1B+PC)最短,即线段A1C最短,根据勾股定理,即可.

试题解析:(1)∵△ABP逆时针旋转60°得到△A′BC,∴∠A′BA=60°,A′B=AB,AP=A′C

∴△A′BA是等边三角形,∴A′A=AB=BA′=2,在△AA′C中,A′C<AA′+AC,即AP<6,则当点A′A、C三点共线时,A′C=AA′+AC,即AP=6,即AP的最大值是:6;

故答案为:6.

(2)①旋转后的图形如图1;

②如图2,∵Rt△ABC是等腰三角形,∴AB=BC.

以B为中心,将△APB逆时针旋转60°得到△A1P1B.则A1B=AB=BC=4,PA=P1A1,PB=P1B,∴PA+PB+PC=P1A1+P1B+PC.

∵当A1、P1、P、C四点共线时,(P1A+P1B+PC)最短,即线段A1C最短,∴A1C=PA+PB+PC,∴A1C长度即为所求.

过A1作A1D⊥CB延长线于D.

∵∠A1BA=60°(由旋转可知),∴∠A1BD=30°.

∵A1B=4,∴A1D=2,BD=∴CD=4+

在Rt△A1DC中,A1C===

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】2015-2016赛季中国男子篮球职业联赛(即CBA)激战正酣,浙江广厦队表现不俗,暂居榜首,马布里领衔的卫冕冠军北京首钢队战绩不佳,截止1223日,在前21轮比赛中,积35分位列第七位,按比赛规则,胜一场得2分,负一场得1分,那么截止1223日北京首钢队共胜了多少场?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB=A1B,A1B1=A1B2 , A2B2=A2B3 , A3B3=A3B4 , …若∠A=70°,则∠An的度数为(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若mn=6,a+b=8,a﹣b=5,则mna2﹣nmb2的值是(
A.60
B.120
C.240
D.360

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2018年春节期间,云南接待游客约2882万人,旅游收入约193亿元,其中2882万用科学记数法表示为____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校在基地参加社会实践话动中,带队老师考问学生:基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长69米的不锈钢栅栏围成,与墙平行的一边留一个宽为3米的出入口,如图所示,如何设计才能使园地的而积最大?下面是两位学生争议的情境:

请根据上面的信息,解决问题:

(1)设AB=x米(x>0),试用含x的代数式表示BC的长;

(2)请你判断谁的说法正确,为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】多项式mx+n可分解为m(x﹣y),则n表示的整式为(
A.m
B.my
C.﹣y
D.﹣my

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】等腰三角形ABC中,一腰AB的垂直平分线交另一腰AC于G,已知AB=10,△GBC的周长为17,则底BC为(
A.5
B.7
C.10
D.9

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD.

(1)求点C,D的坐标;
(2)若在y轴上存在点 M,连接MA,MB,使SMAB=S平行四边形ABDC , 求出点M的坐标.
(3)若点P在直线BD上运动,连接PC,PO.
①若P在线段BD之间时(不与B,D重合),求SCDP+SBOP的取值范围;
②若P在直线BD上运动,请直接写出∠CPO、∠DCP、∠BOP的数量关系.

查看答案和解析>>

同步练习册答案