精英家教网 > 初中数学 > 题目详情

【题目】如图,在Rt△ABC中,∠C=90°,∠A=30°.点D是AB中点,点E为边AC上一点,连接CD,DE,以DE为边在DE的左侧作等边三角形DEF,连接BF.

(1)△BCD的形状为
(2)随着点E位置的变化,∠DBF的度数是否变化?并结合图说明你的理由;
(3)当点F落在边AC上时,若AC=6,请直接写出DE的长.

【答案】
(1)等边三角形
(2)解:∠DBF的度数不变,理由如下:

∵∠ACB=90°,点D是AB中点,

∴CD= AB=AD,

∴∠ECD=30°.

∵△BDC为等边三角形,

∴BD=DC,∠BDC=60°.

又∵△DEF为等边三角形,

∴DF=DE,∠FDE=60°,

∴∠BDF+∠FDC=∠EDC+∠FDC=60°,

∴∠BDF=∠CDE.

在△BDF和△CDE中,

∴△BDF≌△CDE(SAS),

∴∠DBF=∠DCE=30°,

即∠DBF的度数不变


(3)解:过点E作EM⊥AB于点M,如图所示.

在Rt△ABC中,∠A=30°,AC=6,

∴AB=2BC,AC= = BC=6,

∴BC=2 ,AB=4

∵△DEF为等边三角形,

∴∠DEF=60°,

∵∠A=30°,

∴∠ADE=30°,

∴DE=AE,

∴AM= AD= × AB=

在Rt△AME中,∠A=30°,AM=

∴AE=2EM,AM= = EM,

∴EM=1,AE=2,

∴DE=2.


【解析】解:(1)∵在Rt△ABC中,∠C=90°,∠A=30°,

∴AB=2BC,∠CBD=60°.

∵点D是AB中点,

∴BD=BC,

∴△BCD为等边三角形.

所以答案是:等边三角形.

【考点精析】掌握等边三角形的性质和含30度角的直角三角形是解答本题的根本,需要知道等边三角形的三个角都相等并且每个角都是60°;在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,用长为22米的篱笆,一面利用墙(墙的最大可用长度为14米),围成中间隔有一道篱笆的长方形花圃,为了方便出入,在建造篱笆花圃时,在BC上用其他材料做了宽为1米的两扇小门.

(1)设花圃的一边AB长为x米,请你用含x的代数式表示另一边AD的长为   米;

(2)若此时花圃的面积刚好为45m2,求此时花圃的长与宽.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b﹣1)x+c的图象可能是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直角墙角AOB(OA⊥OB,且OA、OB长度不限)中,要砌20m长的墙,与直角墙角AOB围成地面为矩形的储仓,且地面矩形AOBC的面积为96m2
(1)求这地面矩形的长;
(2)有规格为0.80×0.80和1.00×1.00(单位:m)的地板砖单价分别为55元/块和80元/块,若只选其中一种地板砖都恰好能铺满储仓的矩形地面(不计缝隙),用哪一种规格的地板砖费用较少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,CDABC的中线,CEABC的高,若AC9BC12AB15.

(1)CD的长.

(2)DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】教材第九章中探索乘法公式时,设置由图形面积的不同表示方法验证了乘法公式.我国著名的数学家赵爽,早在公元3世纪,就把一个矩形分成四个全等的直角三角形,用四个全等的直角三角形拼成了一个大的正方形(如图①),这个图形称为赵爽弦图,验证了一个非常重要的结论:在直角三角形中两直角边ab与斜边c满足关系式a2b2c2,称为勾股定理.

(1)爱动脑筋的小明把这四个全等的直角三角形拼成了另一个大的正方形(如图②),也能验证这个结论,请你帮助小明完成验证的过程.

(2)小明又把这四个全等的直角三角形拼成了一个梯形(如图③),利用上面探究所得结论,求当a3b4时梯形ABCD的周长.

(3)如图④,在每个小正方形边长为1的方格纸中,ABC的顶点都在方格纸格点上.请在图中画出ABC的高BD,利用上面的结论,求高BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将三角形ABC向右平移5个单位长度,再向上平移3个单位长度请回答下列问题:

1)平移后的三个顶点坐标分别为:A1   B1   C1   

2)画出平移后三角形A1B1C1

3)求三角形ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列条件:(1)A=25°,∠B=65°(2)3A=2B=C(3)A=5B(4)2A=3B=4C中,其中能确定ABC是直角三角形的条件有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工厂加工一批零件,为了提高工人工作积极性,工厂规定每名工人每次薪金如下:生产的零件不超过a件,则每件3元,超过a件,超过部分每件b元,如图是一名工人一天获得薪金y(元)与其生产的件数x(件)之间的函数关系式,则下列结论错误的是(
A.a=20
B.b=4
C.若工人甲一天获得薪金180元,则他共生产50件
D.若工人乙一天生产m(件),则他获得薪金4m元

查看答案和解析>>

同步练习册答案