精英家教网 > 初中数学 > 题目详情

如图,在△ABD和△ACE中,AB=AD,AC=AE,∠BAD=∠CAE,连接BC、DE相交于点F,BC与AD相交于点G.

(1)求证:BC=DE;
(2)如果∠ABC=∠CBD ,那么线段FD是线段FG和FB的比例中项吗?为什么?

(1)由∠BAD=∠CAE可得∠BAC=∠DAE,再由AB=AD,AC=AE可得△BAC≌△DAE,即可证得结论;(2)是

解析试题分析:(1)由∠BAD=∠CAE可得∠BAC=∠DAE,再由AB=AD,AC=AE可得△BAC≌△DAE,即可证得结论;
(2)由(1)知∠ABC=∠ADE,由∠ABC =∠CBD可得∠CBD=∠ADE,再有∠DFG=∠BFD可得△DFG∽△BFD,根据相似三角形的性质即可得到结果.
(1)∵∠BAD=∠CAE
∴∠BAC=∠DAE 
∵AB=AD,AC=AE
∴△BAC≌△DAE
∴BC=DE;
(2)FD是FG和FB的比例中项
理由,由(1)知∠ABC=∠ADE
∵∠ABC =∠CBD
∴∠CBD=∠ADE
又∵∠DFG=∠BFD
∴△DFG∽△BFD 
∴FG:FD=FD:BF
∴FD2=FG·FB.
考点:全等三角形的判定和性质,相似三角形的判定和性质
点评:相似三角形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考常见题,一般难度不大,需熟练掌握.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、如图,在△ABD和△ACE中,有下列四个等式:①AB=AC;②AD=AE;③∠1=∠2;④BD=CE.以其中三个条件为题设,填入已知栏中,一个论断为结论,填入下面求证栏中,使之组成一个真命题,并写出证明过程.
已知:
在△ABD和△ACE中,AB=AC,AD=AE,BD=CE

求证:
∠1=∠2

证明:

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABD和△ACE中,AB=AD,AC=AE,∠BAD=∠CAE,连接BC、DE相交于点F,BC与AD相交于点G.求证:BC=DE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABD和△BAC中,∠1=∠2,∠C=∠D,AC、BD相交于点E,则下列结论中正确的个数有(  )
①∠DAE=∠CBE;②△ADE≌△BCE;③CE=DE;④△EAB为等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABD和△ACE中,AB=AD,AC=AE,∠BAD=∠CAE,连接BC、DE相交于点F,BC与AD相交于点G.
(1)试说明:△ABC≌△ADE.
(2)如果线段FD是线段FG和FB的比例中项,那么BC平分∠ABD吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABD和△ACE中,有下列四个等式:
①AB=AC  ②AD=AE  ③∠1=∠2  ④BD=CE.
请你从中选三个作为题设,余下的一个作为结论,写出一个正确的命题,并加以说理.
题设:
AB=AC,AD=AE,BD=CE
AB=AC,AD=AE,BD=CE
,结论:
∠1=∠2
∠1=∠2
.(不能只填序号)理由如下:

查看答案和解析>>

同步练习册答案