精英家教网 > 初中数学 > 题目详情
(2006•辽宁)如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0),B(0,-4),C(2,-4)三点,且与x轴的另一个交点为E.
(1)求抛物线的解析式;
(2)用配方法求抛物线的顶点D的坐标和对称轴;
(3)求四边形ABDE的面积.

【答案】分析:(1)已知了抛物线上三点的坐标,即可用待定系数法求出抛物线的解析式.
(2)根据(1)的解析式按要求求解即可.
(3)由于四边形ABDE不是规则的四边形,因此可将其分割成几个规则图形来求解.
方法不唯一:①可连接OD,将梯形的面积分割成三个三角形的面积进行求解.
②可过D作x轴的垂线,将梯形的面积分割成两个三角形和一个直角梯形进行求解.
解答:解:(1)∵抛物线y=ax2+bx+c经过A(-2,0),B(0,-4),C(2,-4)三点

解得
∴抛物线解析式:y=x2-x-4.

(2)y=x2-x-4=(x-1)2-
∴顶点坐标D(1,-),对称轴直线x=1.

(3)连接OD,对于抛物线解析式y=x2-x-4
当y=0时,得x2-2x-8=0,
解得:x1=-2,x2=4.
∴E(4,0),OE=4.
∴S四边形ABDE=S△AOB+S△BOD+S△EOD=OA•OB+OB•xD的横坐标+OEyD的纵坐标=4+2+9=15.
点评:本题主要考查了二次函数解析式的确定以及图形面积的求法等知识点,不规则图形的面积通常转化为规则图形的面积的和差.
练习册系列答案
相关习题

科目:初中数学 来源:2006年全国中考数学试题汇编《二次函数》(09)(解析版) 题型:解答题

(2006•辽宁)如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0),B(0,-4),C(2,-4)三点,且与x轴的另一个交点为E.
(1)求抛物线的解析式;
(2)用配方法求抛物线的顶点D的坐标和对称轴;
(3)求四边形ABDE的面积.

查看答案和解析>>

科目:初中数学 来源:2006年全国中考数学试题汇编《一次函数》(07)(解析版) 题型:解答题

(2006•辽宁)如图,已知A(-1,0),E(0,-),以点A为圆心,以AO长为半径的圆交x轴于另一点B,过点B作BF∥AE交⊙A于点F,直线FE交x轴于点C.
(1)求证:直线FC是⊙A的切线;
(2)求点C的坐标及直线FC的解析式;
(3)有一个半径与⊙A的半径相等,且圆心在x轴上运动的⊙P.若⊙P与直线FC相交于M,N两点,是否存在这样的点P,使△PMN是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2006年全国中考数学试题汇编《一次函数》(07)(解析版) 题型:解答题

(2006•辽宁)如图,四边形OABC是一张放在平面直角坐标系中的正方形纸片.点O与坐标原点重合,点A在x轴上,点C在y轴上,OC=4,点E为BC的中点,点N的坐标为(3,0),过点N且平行于y轴的直线MN与EB交于点M.现将纸片折叠,使顶点C落在MN上,并与MN上的点G重合,折痕为EF,点F为折痕与y轴的交点.
(1)求点G的坐标;
(2)求折痕EF所在直线的解析式;
(3)设点P为直线EF上的点,是否存在这样的点P,使得以P,F,G为顶点的三角形为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2006年辽宁省十一市中考数学试卷(大纲卷)(解析版) 题型:解答题

(2006•辽宁)如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0),B(0,-4),C(2,-4)三点,且与x轴的另一个交点为E.
(1)求抛物线的解析式;
(2)用配方法求抛物线的顶点D的坐标和对称轴;
(3)求四边形ABDE的面积.

查看答案和解析>>

同步练习册答案