精英家教网 > 初中数学 > 题目详情

【题目】如图,在数轴上 A点表示的数是 a ,B 点表示的数是b ,且 ab满足|a 8|b-220.动线段 CD=4(点 D 在点 C 的右侧),从点 C与点 A重合的位置出发,以每秒 2 个单位的速度向右运动,运动时间为 t秒.

(1)求a,b的值, 运动过程中,点 D 表示的数是多少,(用含有 t 的代数式表示)

(2)在 B、C、D 三个点中,其中一个点是另外两个点为端点的线段的中点,求 t 的值;

(3)当线段 CD 在线段 AB上(不含端点重合)时,如图,图中所有线段的和记作为 S, 则 S的值是否随时间 t 的变化而变化?若变化,请说明理由;若不变,请求出 S值.

【答案】(1)2t-4;(2)t=1;(3)见解析.

【解析】

(1)利用|a 8|b-220,得a+8=0,b-2=0,解得a,b的值,进而求出点 D 表示的数;(2)根据A、B之间的距离及线段CD的长度判断出点D为线段BC的中点。再利用线段上两点之间的距离求解即可;(3)由S=AB+AC+AD+BC+DC+BD求解即可.

(1)由题意得:,解得:D 表示的数为:2t-4;

(2)由题意可得点D一定为线段BC的中点,

5-t=6-2t,

t=1;

(3)不变;由图可得总共有6条线段,

S=AB+AC+AD+BC+DC+BD

=2+8+(2-2t+4)+(2-2t+8)+(2t-4-2t+8)+(2t-8+8)+(2t-4+8)

=10+6-2t+10-2t+4+2t+2t+4

=34

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知ABC中,AB=ACDABC所在平面内的一点,过DDEABDFAC分别交直线AC,直线AB于点EF.

1)如图1,当点D在线段BC上时,通过观察分析线段DEDFAB之间的数量关系,并说明理由;

2)如图2,当点D在直线BC上,其他条件不变时,试猜想线段DEDFAB之间的数量关系(请直接写出等式,不需证明);

3)如图3,当点DABC内一点,过DDEABDFAC分别交直线AC,直线AB和直线BCEFG. 试猜想线段DEDFDGAB之间的数量关系(请直接写出等式,不需证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,AC=6BC=8

1)用直尺和圆规作∠A的平分线,交BC于点D;(要求:不写作法,保留作图痕迹)

2SADCSADB .(直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+b(k≠0)的图象与x轴的交点坐标为(-2,0),则下列说法:①y随x的增大而减小;②关于x的方程kx+b=0的解为x=-2;③kx+b>0的解集是x>-2;④b<0.其中正确的有__________.(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)已知一个角的补角比它的余角的 3 倍大 30°,求这个角的度数;

(2)如图,点 C、D在线段 AB上, D是线段 AB的中点, AC AD , AB6,求线段 CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线 轴交于点 (点 分别在 轴的左右两侧)两点,与 轴的正半轴交于点 ,顶点为 ,已知点 .

(1)求点 的坐标;
(2)判断△ 的形状,并说明理由;
(3)将△ 沿 轴向右平移 个单位( )得到△ .△ 与△ 重叠部分(如图中阴影)面积为 ,求 的函数关系式,并写出自变量 的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】你能求(x1)(x99+x98+x97++x+1)的值吗?遇到这样的问题,我们可以先思考一下,从简单的情形入手.先分别计算下列各式的值.

x1)(x+1)=x21

x1)(x2+x+1)=x31

x1)(x3+x2+x+1)=x41

……

由此我们可以得到:(x1)(x99+x98+x97++x+1)=   

请你利用上面的结论,再完成下面两题的计算:

1)(﹣250+(﹣249+(﹣248++(﹣2+1

2)若x3+x2+x+10,求x2019的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:E在△ABCAC边的延长线上,D点在AB边上,DEBC于点F,DF=EF,BD=CE.求证:△ABC是等腰三角形(过DDG∥ACBCG)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图AB∥CD.∠1=∠2,∠3=∠4,试说明AD∥BE.

解:∵AB∥CD(已知)

∴∠4=∠

∵∠3=∠4(已知)

∴∠3=∠

∵∠1=∠2(已知)

∴∠1+∠CAF=∠2+∠CAF(

即∠ =∠

∴∠3=∠

∴AD∥BE(

查看答案和解析>>

同步练习册答案