【题目】某商店用1500元人民币购进某种水果销售,过了一周时间,又用3400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的价格贵了2元.
(1)该商店第一次购进这种水果多少千克?
(2)假设该商店两次购进的这种水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进的这种水果全部售完,利润不低于900元,则每千克这种水果的标价至少是多少元?
【答案】(1)该商店第一次购进这种水果100千克;(2)每千克这种水果的标价至少是20元
【解析】
(1)设该商店第一次购进水果x千克,则第二次购进水果2x千克,然后根据每千克的价格比第一次购进的价格贵了2元,列出方程求解即可;
(2)设每千克水果的标价是y元,然后根据两次购进水果全部售完,利润不低于900元列出不等式,然后求解即可得出答案.
解:(1)设该商店第一次购进水果x千克,则第二次购进水果2x千克,
由题意得:,
解得:,
经检验,是分式方程的解,
∴,
答:该商店第一次购进这种水果100千克;
(2)由(1)得该商店第二次购进这种水果的数量为:千克;
设每千克水果的标价是y元,由题意得:
,
解得:,
答:每千克这种水果的标价至少是20元.
科目:初中数学 来源: 题型:
【题目】已知,点P是直角三角形ABC斜边AB上一动点(不与A,B重合),分别过A,B向直线CP作垂线,垂足分别为E,F,Q为斜边AB的中点.
(1)如图1,当点P与点Q重合时,AE与BF的位置关系是 ,QE与QF的数量关系式 ;
(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;
(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列事件中,最适合使用全面调查的方式收集数据的是( )
A.了解某地区人民对修建高速路的意见
B.了解同批次灯泡的使用寿命
C.了解我校七年级某班同学的课外阅读时间
D.了解昆明市中学生对“社会主义核心价值观”的知晓率
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】晨光文具店有一套体育用品:1个篮球,1个排球和1个足球,一套售价300元,也可以单独出售,小攀同学共有50元、20元、10元三种面额钞票各若干张.如果单独出售,每个球只能用到同一种面额的钞票去购买.若小面额的钱的张数恰等于另两种面额钱张数的乘积,那么所有可能中单独购买三个球中所用到的钱最少的一个球是___________元.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某餐厅中,一张桌子可坐6人,有如图所示的两种摆放方式:
(1)当有n张桌子时,两种摆放方式各能坐多少人?
(2)一天中午餐厅要接待98位顾客共同就餐,但餐厅只有25张这样的餐桌.若你是这个餐厅的经理,你打算选择哪种方式来摆放餐桌?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一项工程,甲、乙两公司合做,12天可以完成,共需付工费102000元;如果甲、乙两公司单独完成此项公程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元。
(1)甲、乙公司单独完成此项工程,各需多少天?
(2)若让一个公司单独完成这项工程,哪个公司施工费较少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,张三打算在院落种上蔬菜.已知院落为东西长为32米,南北宽为20米的长方形,为了行走方便,要修筑同样宽度的三条小路,东西两条,南北一条,余下的部分种上各类蔬菜.若每条小路的宽均为1米.
(1)求蔬菜的种植面积;
(2)若每平方米的每季蔬菜的值为3元,成本为1元,这个院落每季的产值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:已知点A、B是反比例函数y=﹣上在第二象限内的分支上的两个点,点C(0,3),且△ABC满足AC=BC,∠ACB=90°,则线段AB的长为__.
【答案】
【解析】过点A作AD⊥y轴于点D,过点B作BE⊥y轴于点E,过点A作AF⊥BE轴于点F,如图所示.
∵∠ACB=90°,
∴∠ACD+∠BCE=90°,
又∵AD⊥y轴,BE⊥y轴,
∴∠ACD+∠CAD=90°,∠BCE+∠CBE=90°,
∴∠ACD=∠CBE,∠BCE=∠CAD.
在△ACD和△CBE中,由,
∴△ACD≌△CBE(ASA).
设点B的坐标为(m,﹣)(m<0),则E(0,﹣),点D(0,3﹣m),点A(﹣﹣3,3﹣m),
∵点A(﹣﹣3,3﹣m)在反比例函数y=﹣上,
,解得:m=﹣3,m=2(舍去).
∴点A的坐标为(﹣1,6),点B的坐标为(﹣3,2),点F的坐标为(﹣1,2),
∴BF=2,AF=4,
故答案为:2.
【点睛】
过点A作AD⊥y轴于点D,过点B作BE⊥y轴于点E,过点A作AF⊥BE轴于点F,根据角的计算得出“∠ACD=∠CBE,∠BCE=∠CAD”,由此证出△ACD≌△CBE;再设点B的坐标为(m,﹣),由三角形全等找出点A的坐标,将点A的坐标代入到反比例函数解析式中求出m的值,将m的值代入A,B点坐标即可得出点A,B的坐标,并结合点A,B的坐标求出点F的坐标,利用勾股定理即可得出结论.
【题型】填空题
【结束】
18
【题目】二次函数y=x2+(2m+1)x+(m2﹣1)有最小值﹣2,则m=________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一张方桌由1个桌面,4条桌腿组成,如果1m3木料可以做方桌的桌面50个或做桌腿300条,现有25m3木料,那么用多少m3的木料做桌面,多少m3的木料做桌腿,做出的桌面与桌腿,恰好能配成方桌?能配成多少张方桌.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com