精英家教网 > 初中数学 > 题目详情

已知:如图等腰△ABC的腰长为2,底边BC=4,以BC所在的直线为x轴,BC的垂直平分线为y轴建立如图所示的直角坐标系,则B(      )C(      )A(      ).

             

 

【答案】

(-2,0),(2,0),A(0,2)

【解析】

试题分析:根据题意及等腰三角形的性质可求得点B,C的坐标,再根据两点间距离公式不难求得点A的坐标.

∵点O的坐标为(0,0),底边BC=4,AB=AC=2

∴OB=OC

∴B的坐标为:(-2,0),C的坐标为:(2,0)

∴y=±2

∵点A在正轴上

∴点A的坐标为:(0,2),

故答案为:(-2,0),(2,0),(0,2).

考点:此题主要考查等腰三角形的性质,坐标与图形的性质

点评:解答本题的关键是读懂题意,仔细分析平面直角坐标系,注意数形结合.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

29、已知:如图,AB=AC,DE∥AC,求证:△DBE是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、已知:如图,AB是⊙O的直径,P是AB上的一点(与A、B不重合),QP⊥AB,垂足为P,直线QA交⊙O于C点,过C点作⊙O的切线交直线QP于点D.则△CDQ是等腰三角形.
对上述命题证明如下:
证明:连接OC
∵OA=OC
∴∠A=∠1
∵CD切O于C点
∴∠OCD=90°
∴∠1+∠2=90°
∴∠A+∠2=90°
在RtQPA中,∠QPA=90°
∴∠A+∠Q=90°
∴∠2=∠Q
∴DQ=DC
即CDQ是等腰三角形.
问题:对上述命题,当点P在BA的延长线上时,其他条件不变,如图所示,结论“△CDQ是等腰三角形”还成立吗?若成立,请给予证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

8、已知:如图,AB=AC,∠A=36°,AB的垂直平分线交AC于D,则下列结论:①∠C=72°;②BD是∠ABC的平分线;③△ABD是等腰三角形;④△BCD是等腰三角形,其中正确的有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

24、先阅读下面的材料,然后解答问题:
已知:如图1等腰直角三角形ABC中,∠B=90°,AD是角平分线,交BC边于点D.
求证:AC=AB+BD.
证明:如图1,在AC上截取AE=AB,连接DE,则由已知条件易知:Rt△ADB≌Rt△ADE(AAS)
∴∠AED=∠B=90°,DE=DB
又∵∠C=45°,∴△DEC是等腰直角三角形.
∴DE=EC.
∴AC=AE+EC=AB+BD.
我们将这种证明一条线段等于另两线段和的方法称为“截长法”.
解决问题:现将原题中的“AD是内角平分线,交BC边于点D”换成“AD是外角平分线,交BC边的延长线于点D,如图2”,其他条件不变,请你猜想线段AC、AB、BD之间的数量关系,并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•江西)已知:如图,AB=AC,∠A=36°,AB的垂直平分线交AC于D,则下列结论:
(1)∠C=72°,
(2)BD是∠ABC的平分线,
(3)△ABD是等腰三角形,
(4)△BCD∽△ABC,
其中正确的有(  )

查看答案和解析>>

同步练习册答案