精英家教网 > 初中数学 > 题目详情
9、如图,∠A,∠D为直角,BE=EC,则图中全等的两对三角形可以是
△ABE≌△DCE
△ABC≌△DCB
分析:由于∠A=∠D为直角,BE=EC,隐含的条件为:∠AEB=∠DEC,利用AAS可证△ABE≌△DCE,那么AB=CD,再加上一组公共边BC=CB,易证△ABC≌△DCB.
解答:解:∵∠A=∠D为直角,BE=EC,∠AEB=∠DEC,
∴△ABE≌△DCE,
∴AB=CD,AE=ED,
∴AC=BD,
又∵BC=BC,
∴△ABC≌△DCB(HL).
故填空答案:△ABE≌△DCE或△ABC≌△DCB.
点评:本题考查了全等三角形的判定;需注意除已知条件外,隐含条件对顶角的应用,在找全等三角形时,要由易到难,不重不漏.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,将边长为6cm的正六边形纸板的六个角各剪切去一个全等的四边形,再沿虚线折起,做成一个无盖直六棱柱纸盒,使侧面积等于底面积,被剪去的六个四边形的面积和为
 
cm2.(结果精确到0.1cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图是一个底面为正六边形的直六棱柱的主视图和俯视图,则其左视图的面积为
 

精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.
(1)请完成如下操作:
①以点O为原点、竖直和水平方向所在的直线为坐标轴、网格边长为单位长,建立平面直角坐标系;②用直尺和圆规画出该圆弧所在圆的圆心D的位置(不用写作法,保留作图痕迹),并连接AD、CD.
(2)请在(1)的基础上,完成下列问题:
①写出点的坐标:C
 
、D
 

②⊙D的半径=
 
(结果保留根号);
③若扇形ADC是一个圆锥的侧面展开图,则该圆锥的底面面积为
 
(结果保留π);
④若E(7,0),试判断直线EC与⊙D的位置关系并说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•包头)如图,拦水坝的横断面为梯形ABCD,坝顶宽AD=5米,斜坡AB的坡度i=1:3(指坡面的铅直高度AE与水平宽度BE的比),斜坡DC的坡度i=1:1.5,已知该拦水坝的高为6米.
(1)求斜坡AB的长;
(2)求拦水坝的横断面梯形ABCD的周长.
(注意:本题中的计算过程和结果均保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.
(1)请完成如下操作:
①以点O为原点、竖直和水平方向所在的直线为坐标轴、网格边长为单位长度,建立平面直角坐标系;②用直尺和圆规画出该圆弧所在圆的圆心D的位置(不用写作法,保留作图痕迹),并连接AD、CD.
(2)请在(1)的基础上,完成下列问题:
①写出点的坐标:C
(6,2)
(6,2)
、D
(2,0)
(2,0)

②⊙D的半径=
2
5
2
5
.(结果保留根号).

查看答案和解析>>

同步练习册答案