精英家教网 > 初中数学 > 题目详情

【题目】如图,AB为⊙O的直径,劣弧,BDCE,连接AE并延长交BDD.

(1)求证:BD是⊙O的切线;

(2)若⊙O的半径为2cm,AC=3cm,求BD的长.

【答案】(1)证明见解析;(2)

【解析】

试题(1)根据题意得出AB平分CE,由垂径定理得推论得出AB⊥CE,再由BD∥CE,得出BD是⊙O的切线;
(2)连接BE,则∠AEB=90°,在直角三角形中,利用三角函数的定义求得AD,再在Rt△ABD中,由勾股定理得出BD的长.

试题解析:

(1)证明:

AB是直径,(1分)

ABCE

BDCE,

DBAB,

BD是⊙O的切线

(2)解:连接BE,AB为⊙O的直径(4分),

∴∠AEB=90°

∴在RtABE中,cosBAE=

∴在Rt△ABD中,cos∠BAD=

∴在RtABD中,由勾股定理得:BD=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就学生体育活动兴趣爱好的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:

1)在这次调查中,喜欢篮球项目的同学有   人,在扇形统计图中,乒乓球的百分比为   %,如果学校有800名学生,估计全校学生中有   人喜欢篮球项目.

2)请将条形统计图补充完整.

3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,△ABC中,AB=BC,DEAB于点E,DFBC于点D,交ACF.

若∠AFD=155°,求∠EDF的度数;

若点FAC的中点,求证:∠CFD=B.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,,连结AC,过点C作直线lAB,点P是直线l上的一个动点,直线PA与⊙O交于另一点D,连结CD,设直线PB与直线AC交于点E.

(1)求∠BAC的度数;

(2)当点DAB上方,且CDBP时,求证:PC=AC;

(3)在点P的运动过程中

①当点A在线段PB的中垂线上或点B在线段PA的中垂线上时,求出所有满足条件的∠ACD的度数;

②设⊙O的半径为6,点E到直线l的距离为3,连结BD,DE,直接写出BDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示的正整数后,背面向上,洗匀放好.

(1)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,嘉嘉从中随机抽取一张,求抽到的卡片上的数是勾股数的概率P1

(2)琪琪从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张(卡片用A,B,C,D表示).请用列表或画树形图的方法求抽到的两张卡片上的数都是勾股数的概率P2,并指出她与嘉嘉抽到勾股数的可能性一样吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,A、B为x轴上两点,C、D为y轴上的两点,经

过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封

闭曲线称为“蛋线”.已知点C的坐标为(0,),点M是抛物线C2<0)的顶点.

(1)求A、B两点的坐标;

(2)“蛋线”在第四象限上是否存在一点P,使得PBC的面积最大?若存在,求出PBC面积的最大值;若不存在,请说明理由;

(3)当BDM为直角三角形时,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,DBC的中点,过D点的直线EGAB于点E,交AB的平行线CG于点G,DFEG,交AC于点F.

(1)求证:BE=CG;

(2)判断BE+CFEF的大小关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形纸片ABCD中,∠A=70°,∠B=80°,将纸片折叠,使C,D落在AB边上的C′,D′处,折痕为MN,则∠AMD′+∠BNC′=( ).

A. 60° B. 70° C. 80° D. 90°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,ADB≌△EDBBDE≌△CDEBEC在一条直线上.下列结论:①BD是∠ABE的平分线;②ABAC;③∠C=30°;④线段DEBDC的中线;⑤AD+BD=AC.其中正确的有( )个.

A.2B.3C.4D.5

查看答案和解析>>

同步练习册答案