精英家教网 > 初中数学 > 题目详情

【题目】反比例函数y= 的图象经过点A(﹣1,2),则当x>1时,函数值y的取值范围是( )
A.y>﹣1
B.﹣1<y<0
C.y<﹣2
D.﹣2<y<0

【答案】D
【解析】解:根据题意, =2,

解得k=﹣2,

∴反比例函数解析式为y=﹣

在第四象限内,y值随x的增大而增大,

∴y>﹣ ,即y>﹣2,

又∵函数图象在第四象限内,

∴y<0,

∴函数值y的取值范围是﹣2<y<0.

所以答案是:D.

【考点精析】解答此题的关键在于理解一元一次不等式的解法的相关知识,掌握步骤:①去分母;②去括号;③移项;④合并同类项; ⑤系数化为1(特别要注意不等号方向改变的问题),以及对反比例函数的性质的理解,了解性质:当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小; 当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知,点O是直线AB上一点,OC、OD为从点O引出的两条射线,∠BOD=30°,∠COD=∠AOC.

(1)如图,求∠AOC的度数;

(2)如图,在∠AOD的内部作∠MON=90°,请直接写出∠AON∠COM之间的数量关系   

(3)在(2)的条件下,若OM∠BOC的角平分线,试说明∠AON=∠CON.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在边长为1的小正方形网格中,△ABC的顶点都在格点上,建立适当的平面直角坐标系xOy,使得点AB的坐标分别为(23)、(32).

1)在网格中画出满足要求的平面直角坐标系,写出点C的坐标为

2)若点Px轴上的一个动点,则PA+PB的最小值为 .(直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.
(1)求证:PA是⊙O的切线;
(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点C,若ACAB=12,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把长方形纸片ABCD沿EF折叠后,使得点D落在点H的位置上,点C恰好落在边AD上的点G处,连接EG

1)△GEF是等腰三角形吗?请说明理由;

2)若CD4GD8,求HF的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD.若AC=10cm,∠BAC=36°,则图中阴影部分的面积为(
A.5πcm2
B.10πcm2
C.15πcm2
D.20πcm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点ABC是数轴上三点,O为原点.点C对应的数为6BC4AB12

1)求点AB对应的数;

2)动点PQ分别同时从AC出发,分别以每秒6个单位和3个单位的速度沿数轴正方向运动.MAP的中点,NCQ上,且CNCQ,设运动时间为tt0).

①求点MN对应的数(用含t的式子表示); t为何值时,OM2BN

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的面积为12,△ABC是等边三角形,E在正方形ABCD,对角线AC上有一点P使PE+PD的和最小,这个最小值为( )

A. B. C. 3 D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,火车站、码头分别位于A,B两点,直线a和b分别表示铁路与河流.

(1)从火车站到码头怎样走最近,画图并说明理由;

(2)从码头到铁路怎样走最近,画图并说明理由;

(3)从火车站到河流怎样走最近,画图并说明理由.

查看答案和解析>>

同步练习册答案