精英家教网 > 初中数学 > 题目详情
(2003•青海)如图,登山队员在山脚A点测得山顶B的仰角∠CAB=45°,当沿倾斜角为30°的斜坡前进100米到达D点后,又在D点测得山顶B点的仰角为60°,求出高BC(精确到1米).(参考数据:≈1.732,≈1.414)

【答案】分析:过点D作DE⊥AC,△ACB是等腰直角三角形,直角△ADE中满足解直角三角形的条件.可以设EC=x,在直角△BDF中,根据勾股定理,可以用x表示出BF,根据AC=BC就可以得到关于x的方程,就可以求出x,得到BC,即可求出山高.
解答:解:过D作DE⊥AC于E,作DF⊥BC于F(1分).
∵∠BAC=45°,∠ACB=90°.
∴∠ABC=45°.(2分)
又∵∠BDF=60°.
∴∠DBF=30°.
∴∠DAB=∠DBA=15°.(3分)
∴DB=DA=100.(4分)
∵∠DAE=30°.
∴FC=DE=AD=50.(5分)
在△BDF中,sin∠BDF=
∴BF=BD×sin∠BDF=100×=50.(6分)
∴山高BC=BF+FC=50+50≈137(米).(7分)
点评:本意的难度较大,是根据勾股定理,把问题转化为方程问题.
练习册系列答案
相关习题

科目:初中数学 来源:2003年全国中考数学试题汇编《二次函数》(04)(解析版) 题型:解答题

(2003•青海)如图,已知抛物线y=-x2+bx+c与x轴的两个交点分别为A(x1,0),B(x2,0),且
(1)求此抛物线的解析式;
(2)设此抛物线与y轴的交点为C,过点B、C作直线,求此直线的解析式;
(3)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源:2003年青海省中考数学试卷(解析版) 题型:解答题

(2003•青海)如图,已知抛物线y=-x2+bx+c与x轴的两个交点分别为A(x1,0),B(x2,0),且
(1)求此抛物线的解析式;
(2)设此抛物线与y轴的交点为C,过点B、C作直线,求此直线的解析式;
(3)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源:2003年全国中考数学试题汇编《圆》(11)(解析版) 题型:解答题

(2003•青海)如图,已知:AB是⊙O的直径,⊙O过AC的中点D,DE⊥BC,垂足为E,
求证:
(1)DE是⊙O的切线;
(2)CD2=CE•CB.

查看答案和解析>>

科目:初中数学 来源:2003年全国中考数学试题汇编《图形认识初步》(01)(解析版) 题型:选择题

(2003•青海)如图,点C是线段AB的中点,点D是线段BC的中点,下面等式不正确的是( )
A.CD=AD-BC
B.CD=AC-DB
C.CD=AB-BD
D.CD=AB

查看答案和解析>>

同步练习册答案