精英家教网 > 初中数学 > 题目详情
12.计算:x3•x4=x7

分析 根据同底数幂的乘法,即可解答.

解答 解:x3•x4=x7,故答案为:x7

点评 本题考查了同底数幂的乘法,解决本题的关键是熟记同底数幂的乘法.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

2.△ABC的周长为16,点D,E,F分别是△ABC的边AB、BC、CA的中点,连接DE,EF,DF,则△DEF的周长是8.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,AB是⊙O的直径,延长AB到点C,使得2BC=3OB,D是⊙O上一点,连接AD,CD,过点A作CD的垂线,交CD的延长线于点F,过点D作DE⊥AC于点E,且DE=DF.
(1)求证:CD是⊙O的切线;
(2)若AB=4.
①求DF的长;
②连接OF,交AD于点M,求DM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,直线l1:y=-x+8与x轴、y轴分别交于点A和点B,直线l2:y=x与直线l1交于点C,D为线段BC上一点,点D从B出发,以每秒$\sqrt{2}$个单位长度沿BC方向运动,到C点时停止.过D作直线DP垂直于x轴,交线段OC、x轴于点E,P,以DE为斜边向左侧等腰Rt△DEF,点D的运动时间为t(秒)
(1)直接写出答案:AB=11.3(精确到0.1),∠OAB45度;
(2)试求动点E的坐标,并计算DE的长度(用含t的代数式表示);
(3)当t=2时,求点F的坐标,并判断:当t=2时,在x轴上是否存在这样的点M,使得M、A、F为顶点的三角形为等腰三角形;若存在,请求出M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,在平面直角坐标系中,矩形ABCO的边CO、OA分别在x轴、y轴上,点E在边BC上,将该矩形沿AE折叠,点B恰好落在边OC上的F处.若OA=8,CF=4,则点E的坐标是(-10,3).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.在△ABC中AB=AC=13,BC=10,则BC边上的高为12.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.下列说法正确的是(  )
A.每个命题都有逆命题B.真命题的逆命题是真命题
C.假命题的逆命题是假命题D.以上都不对

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.在一次数学活动中,黑板上画着如图所示的图形,活动前老师在准备的四张卡片(大小、颜色、形状相同)的正面上分别写有如下四个等式中的一个等式:①AB=CD;②AD∥BC;③AB∥CD;④∠A=∠C;小英同学闭上眼睛从四张卡片中随机抽出一张,再从剩下的卡片中随机抽出另一张,请结合图形回答下列问题:
(1)当抽得②和④时,用②和④作条件能否判定四边形是平行四边形,请说明理由;
(2)请你用树状图或表格表示抽取两张卡片上的条件的所有可能出现的结果(用序号表示)并求以已经抽取的两张卡片上的条件为已知,使四边形不能构成平行四边形的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.化简:
(1)$\frac{2x}{\frac{1}{3}x+\frac{1}{2}}$;
(2)$\frac{x+1}{x-\frac{3}{x-2}}$;
(3)$\frac{{a}^{2}-{a}^{-2}}{a+{a}^{-1}}$;
(4)$\frac{1-{a}^{-6}}{1-{a}^{-2}}$;
(5)$\frac{{a}^{2}-7a+10}{{a}^{2}-a+1}$•$\frac{{a}^{3}+1}{{a}^{2}-4a+4}$÷$\frac{a+1}{a-2}$;
(6)$\frac{1}{(x+1)(x+2)}$+$\frac{1}{(x+2)(x+3)}$+…+$\frac{1}{(x+99)(x+100)}$.

查看答案和解析>>

同步练习册答案