精英家教网 > 初中数学 > 题目详情
21、如图所示,△ABC和△ECD均为等边三角形,B、C、D三点共线,AD与BE交于点O.求∠BOD的度数.
分析:根据等边三角形的性质利用SAS判定△ACD≌△BCE,从而得到∠ADC=∠BEC,∠CAD=∠CBE,根据三角形的内角和公式可得到∠BOD的度数.
解答:解:∵△ABC和△ECD均为等边三角形
∴AC=BC,∠ACB=∠DCE=60°,CD=CE,
∴∠BCE=∠ACD=120°
∴△ACD≌△BCE(SAS)
∴∠ADC=∠BEC,∠CAD=∠CBE
∵∠BOD=180°-∠EBC-∠CDA
∵∠BCE=∠ACD=120°
∴∠EBC+∠CEB=∠EBC+∠ADC=60°
∴∠BOD=180°-60°=120°.
点评:本题考查了全等三角形的判定与性质及等边三角形的性质;可围绕结论寻找全等三角形,运用全等三角形的性质判定线段相等,进行角的等量代换是正确解答本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、分别测量如图所示的△ABC和△DEF的内角.
(1)你发现了什么?
(2)你有何猜想?
(3)通过什么途径说明你的猜想?

查看答案和解析>>

科目:初中数学 来源: 题型:

25、如图所示,△ABC和△ADE都是等边三角形,且B、A、E在同一直线上,连接BD交AC于M,连接CE交AD于N,连接MN.
求证:(1)BD=CE;(2)BM=CN;(3)MN∥BE.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图所示,△ABC和△ADE都是等腰直角三角形,且∠BAC=∠EAD=90°,连接BD、CE.
(1)求证:BD=CE;
(2)观察图形,猜想BD与CE之间的位置关系,并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,∠ABC和∠ACB的平分线相交于F,过F作DE∥BC,交AB于D,交AC于E,
求证:(1)△BDF是等腰三角形
(2)BD+EC=DE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知如图所示,△ABC和△ABC外的一点A′,把△ABC平移,使A与A′重合.

查看答案和解析>>

同步练习册答案