精英家教网 > 初中数学 > 题目详情
17.(1)在边长为1的方格纸中,有如图1所示的四边形(顶点都在格点上).
①作出该四边形关于直线l成轴对称的图形;
②完成上述设计后,整个图案的面积等于10.
(2)如图2,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写结论)

分析 (1)①作出四边形的四个顶点关于l的对称点,然后顺次连接即可;
②把四边形看成两个三角形,利用三角形的面积公式即可求解;
(2)作出∠AOB的角平分线和线段CD的中垂线,两线的交点就是P.

解答 解:(1)①

②面积是$\frac{1}{2}$×2(2+3)×2=10,
故答案是10;
(2)

点P就是所求的点.

点评 本题考查了尺规作图,正确理解角平分线的性质和线段的垂直平分线的性质是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

13.方程2x=-6的解是(  )
A.x=3B.x=4C.x=-3D.x=-4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.图1、图2分别是7×6的正方形网格,网格中每个小正方形的边长均为1,点A、B、C均在格点上(小正方形的顶点叫做格点). 
(1)在图1中的格点上确定点D,并画出以A、B、C、D为顶点的四边形,使其既是轴对称图形又是中心对称图形(画一个即可)
(2)在图2中的格点上确定点E,并画出以A、B、C、E为顶点的四边形,使其为轴对称图形但不是中心对称图形(画一个即可)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图1所示,等边△ABC中,AD是BC边上的中线,根据等腰三角形的“三线合一”特性,AD平分∠BAC,且AD⊥BC,则有∠BAD=30°,BD=CD=$\frac{1}{2}$AB.于是可得出结论“直角三角形中,30°角所对的直角边等于斜边的一半”.

请根据从上面材料中所得到的信息解答下列问题:
(1)如图2所示,在△ABC中,∠ACB=90°,BC的垂直平分线交AB于点D,垂足为E,当BD=5cm,∠B=30°时,△ACD的周长=15cm.
(2)如图3所示,在△ABC中,AB=AC,∠A=120°,D是BC的中点,DE⊥AB,垂足为E,那么BE:EA=3:1.
(3)如图4所示,在等边△ABC中,D、E分别是BC、AC上的点,且AE=DC,AD、BE交于点P,作BQ⊥AD于Q,若BP=2,求BQ的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.(-7)-|-4|=-11.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,直角△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是直线AB上的一动点.设∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.
(1)如图1,点P在线段AB上(不与A、B重合).
①若∠α=50°,则∠1+∠2=140°;
②写出∠1、∠2与∠a之间满足的数量关系式,并说明理由.
(2)如图2,若点P运动到边AB的延长线上时,直接写出∠1、∠2与∠a之间所满足的数量关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.如图,已知AC⊥AB,∠1=30°,则∠2的度数是(  )
A.40°B.50°C.60°D.70°

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.在平面直角坐标系中,规定把一个点先绕原点逆时针旋转45°,再作出旋转后的点关于原点的对称点,这称为一次变换,已知点A的坐标为(-1,0),则点A经过连续2016次这样的变换得到的点A2016的坐标是(-1,0).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.成都一机械长接到生产一批机器设备的订单,要求必须在12天(含12天)内完成.已知每台机械设备的成本价为800元,该长平时每天能生产该设备20台.为了加快进度,该厂采取工人分批日夜加班的方式,每天的生产量得到了提高.这样,第一天生产了22台,以后每天生产的设备都比前一天多2台.但由于机器损耗等原因,当每天生产的设备达到30台后,每多生产1台机械设备,当天生产的所有生产的设备每台的成本就增加20元.设生产这批设备的时间为x天,每天生产的机械设备为y台.
(1)直接写出y与x之间的函数关系式,并写出自变量x的取值范围.
(2)若这批机器设备订购价格为每台1200元,该机械厂决定把获得最高利润的那一天的全部利润用来补贴困难职工.设该厂每天的利润为w元,试求出w与x之间的函数关系式,并求出该机械厂用来补贴给困难职工多少钱?

查看答案和解析>>

同步练习册答案