精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,有点M(0,-3),⊙M与x轴交于点A、B(点A在点 B的左侧),与y轴交于点C、E;抛物线y=ax2+bx-8(a≠0)经过A、C两点,点D是抛物线的顶点;
(1)求点A、B、C的坐标;
(2)试探究:当a取何值时,抛物线y=ax2+bx-8(a≠0)的对称轴与⊙M相切?
(3)当点D在第四象限内时,连接BC、BD,且
①试确定a的值;
②设此时的抛物线与x轴的另一个交点是点F,在抛物线的对称轴上找一点T,使|TM-TF|达到最大,请求出最大值与点T的坐标.

【答案】分析:(1)连接MA,分别求得OC、OM、MC、MA后即可得到点A、B、C的坐标;
(2)将点A的坐标代入抛物线的解析式,并表示出其对称轴,根据切线的性质得到a的值即可;
(3)①利用两角的正切值相等可以得到两个角相等,并利用BD⊥AB得到=4并求得a的值即可;
②由对称性知抛物线与x轴的另一个交点F的坐标是(12,0),再由对称性,TF=TA,则|TM-TF|=|TM-TA|≤MA,因此,当点T是MA的延长线与对称轴的交点时,|TM-TF|达到最大,最大值是5;据此可以求得点T的坐标.
解答:解:(1)连接MA,由题意得:OC=8,OM=3,MC=8-3=5,则MA=5,
∴OA=OB=4,
∴点A、点B、点C的坐标分别是(-4,0)、(4,0)、(0,-8),…(6分)

(2)∵抛物线y=ax2+bx-8(a≠0)经过点A,
∴0=16a-4b-8,
∴b=4a-2;
此时,y=ax2+(4a-2)x-8(a≠0),
它的对称轴是直线:x==
要使抛物线的对称轴与⊙M相切,则=±5,
当a=或a=时,抛物线的对称轴与⊙M相切;…(4分)

(3)①在Rt△BOC中,,又
则∠BCO=∠CBD,
∴BD∥OC,
又∵OC⊥AB,
∴BD⊥AB,
即得:=4,
∴a=;…(2分)
②如答图,由对称性,此时,抛物线与x轴的另一个交点F的坐标是(12,0),
由三角形的两边之差小于第三边的性质可知:|TM-TF|≤MF,要使|TM-TF|达到最大,
则点T应在线段MF的延长线,但不可能同时在抛物线的对称轴上,
故达不到最大值是线段MF的长;
而由对称性,TF=TA,则|TM-TF|=|TM-TA|≤MA,
因此,当点T是MA的延长线与对称轴的交点时,|TM-TF|达到最大,最大值是5;
∵BD∥OC,又OA=OB,
∴BT=6,
∴点T的坐标是(4,-6);[也可求出MA所在直线的一次函数,再求点T坐标]…(2分)
点评:本题是二次函数的综合题型,其中涉及到的知识点有抛物线的顶点公式和三角形的面积求法.在求有关动点问题时要注意分析题意分情况讨论结果.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案