【题目】小李经营的车饰店销售某品牌车漆修复液,已知其进价为40元/支,试销阶段发现将售价定为80元/支时,每天可销售20支,后来为了扩大销售量,小李适当降低了售价,销售量y(支)与降价x(元)的关系如图所示.
(1)请仔细读题,并补全下面表格:
降价x/元 | … | 2 | 4 |
| x | … |
销量y/支 | … | 24 | 28 | 30 |
| … |
(2)若要使得平均每天销售这种修复液的利润W最大,则每支修复液应该降价多少元?最大的利润W为多少元?
【答案】(1)5,2x+20;(2)当每支降价15元时,日销售利润最大为1250元.
【解析】
(1)首先利用待定系数法确定一次函数的解析式,然后代入x或y的值求得y或x的值即可;
(2)根据题意列出二次函数,求得函数的最值即可求解答案.
解:(1)设y与x的函数关系式为y=kx+b,
由函数图象可列方程组:,
解得:,
∴y与x的函数关系式为y=2x+20;
当y=30时,30=2x+20,得:x=5,
补全表格如下:
降价x/元 | … | 2 | 4 | 5 | x | … |
销量y/支 | … | 24 | 28 | 30 | 2x+20 | … |
故答案为:5,2x+20;
(2)设降价x元,则每支车漆修复液的利润为(80﹣x﹣40),销售的数量为y,
故每天的销售利润W=(80﹣40﹣x)(2x+20)=﹣2(x﹣15)2+1250,
∵a=﹣2<0,
∴当x=15时,W有最大值为1250.
∴当每支降价15元时,日销售利润最大为1250元.
科目:初中数学 来源: 题型:
【题目】如图,在平面直接坐标系中,将反比例函数的图象绕坐标原点O逆时针旋转45°得到的曲线l,过点,的直线与曲线l相交于点C、D,则sin∠COD=___ .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线与x轴交于A,B两点,与y轴交于点C,点D为线段AC的中点,直线BD与抛物线交于另一点E,与y轴交于点F.
(1)如图1,点P是直线BE上方抛物线上一动点,连接PD,PF,当△PDF的面积最大时,在线段BE上找一点G,使得PG﹣EG的值最小,求出PG﹣EG的最小值;
(2)如图2,点M为抛物线上一点,点N在抛物线的对称轴上,点K为平面内一点,当以点A、M、N、K为顶点的四边形是正方形时,直接写出点N的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某电视台的一档娱乐性节目中,在游戏PK环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳AA1、BB1、CC1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员.
(1)若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA1的概率;
(2)请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=4,BC=3,点P是AB上(不含端点A,B)任意一点,把△PBC沿PC折叠,当点B′的对应点落在矩形ABCD的对角线上时,BP=__________________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 “宜居长沙”是我们的共同愿景,空气质量倍受人们的关注.我市某空气质量检测站点检测了该区域每天的空气质量情况,统计了2013年1月份至4月份若干天的空气质量情况,并绘制了如下两幅不完整的统计图,请根据图中信息,解答下列问题:
(1)统计图共统计了______天空气质量情况.
(2)请将条形统计图补充完整,并计算空气质量为“优”所在扇形圆心角度数.
(3)从小源所在班级的40名同学中,随机选取一名同学去该空气质量监测点参观,则恰好选到小源的概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A,B的坐标分别为(4,0),(3,2).
(1)画出△AOB关于原点O对称的图形△COD;
(2)将△AOB绕点O按逆时针方向旋转90°得到△EOF,画出△EOF;
(3)点D的坐标是 ,点F的坐标是 ,此图中线段BF和DF的关系是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】窑沟村对第一季度A、B两种水果的销售情况进行统计,两种水果的销售量如图所示.
(1)第一季度B种水果的月平均销售量是多少吨?
(2)一月A种水果的销售量是50吨,到三月A种水果的销售量是72吨,第一季度A种水果的销售量的月平均增长率相同,求二月A种水果销售了多少吨?
(3)根据以上信息,请将统计图补充完整.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,E是AC上一点,且AE=AB,∠BAC=2∠EBC ,以AB为直径的⊙O交AC于点D,交EB于点F.
(1)求证:BC与⊙O相切;
(2)若AB=8,BE=4,求BC的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com