【题目】如图,正方形ABCD的边长是18,点E是AB边上的一个动点,点F是CD边上一点,,连接EF,把正方形ABCD沿EF折叠,使点A,D分别落在点,处,当点落在直线BC上时,线段AE的长为________.
【答案】4或16
【解析】
分两种情况:①D′落在线段BC上,②D′落在线段BC延长线上,分别连接ED、ED′、DD′,利用折叠的性质以及勾股定理,即可得到线段AE的长.
解:分两种情况:
①当D′落在线段BC上时,连接ED、ED′、DD′,如图1所示:
由折叠可得,D,D'关于EF对称,即EF垂直平分DD',
∴DE=D′E,
∵正方形ABCD的边长是18,
∴AB=BC=CD=AD=18,
∵CF=8,
∴DF=D′F=CDCF=10,
∴CD′==6,
∴BD'=BCCD'=12,
设AE=x,则BE=18x,
在Rt△AED和Rt△BED'中,
由勾股定理得:DE2=AD2+AE2=182+x2,D'E2=BE2+BD'2=(18x)2+122,
∴182+x2=(18x)2+122,
解得:x=4,即AE=4;
②当D′落在线段BC延长线上时,连接ED、ED′、DD′,如图2所示:
由折叠可得,D,D'关于EF对称,即EF垂直平分DD',
∴DE=D′E,
∵正方形ABCD的边长是18,
∴AB=BC=CD=AD=18,
∵CF=8,
∴DF=D′F=CDCF=10,CD'==6,
∴BD'=BC+CD'=24,
设AE=x,则BE=18x,
在Rt△AED和Rt△BED'中,
由勾股定理得:DE2=AD2+AE2=182+x2,D'E2=BE2+BD'2=(18x)2+242,
∴182+x2=(18x)2+242,
解得:x=16,即AE=16;
综上所述,线段AE的长为4或16;
故答案为:4或16.
科目:初中数学 来源: 题型:
【题目】如图,Rt△OAB的顶点O与坐标原点重合,∠AOB=90°,AO=2BO,当点A在反比例函数(x>0)的图像上移动时,点B的坐标满足的函数表达式为( )
A. (x<0) B. (x<0)
C. (x<0) D. (x<0)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】以下是两张不同类型火车的车票:(“D×××次”表示动车,“G×××次”表示高铁):
(1)根据车票中的信息填空:两车行驶方向 ,出发时刻 (填“相同”或“不同”);
(2)已知该动车和高铁的平均速度分别为200km/h,300km/h,如果两车均按车票信息准时出发,且同时到达终点,求A,B两地之间的距离;
(3)在(2)的条件下,请求出在什么时刻两车相距100km?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】高空抛物极其危险,是我们必须杜绝的行为.据研究,高空抛物下落的时间t(单位:s)和高度 h(单位:m)近似满足公式 t=(不考虑风速的影响)
(1)从 50m 高空抛物到落地所需时间 t1 是多少 s,从 100m 高空抛物到落地所 需时间 t2 是多少 s;
(2)t2 是 t1 的多少倍?
(3)经过 1.5s,高空抛物下落的高度是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】台湾是中国领土不可分割的一部分,两岸在政治、经济、文化等领域交流越来越深,在北京故宫博物院成立90周年院庆时,两岸故宫同根同源,合作举办了多项纪念活动.据统计,北京故宫博物院与台北故宫博物院现共有藏品约245万件,其中台北故宫博物院藏品数量比北京故宫博物院藏品数量的还少25万件,求北京故宫博物院约有多少万件藏品?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1), 点为直线上一点,过点作射线, 将一直角的直角项点放在点处,即反向延长射线,得到射线.
(1)当的位置如图(1)所示时,使,若,求的度数.
(2)当的位置如图(2)所示时,使一边在的内部,且恰好平分,
问:射线的反向延长线是否平分请说明理由:注意:不能用问题中的条件
(3)当的位置如图所示时,射线在的内部,若.试探究与之间的数量关系,不需要证明,直接写出结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知三点在数轴上所对应的数分别为且满足.动点从点出发,以2单位/秒的速度向右运动,同时,动点从点出发,以1单位秒的速度向左运动,线段为“变速区”,规则为: 从点运动到点期间速度变为原来的一半,之后立刻恢复原速,从点运动到点期间速度变为原来的两倍,之后也立刻恢复原速.当点到达点时,两点都停止运动.设运动的时间为秒.
(1) ______,______,______;
(2)①动点从点运动至点时,求的值;
②两点相遇时,求相遇点在数轴上所对应的数;
(3)若点为线段中点,当________秒时,.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,函数和的图象分别为直线,,过点作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,…,依次进行下去,则点的坐标为______,点的坐标为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,数轴上点分别对应数,其中.
当时,线段的中点对应的数是_ _____ .(直接填结果)
若该数轴上另有一点对应着数.
①当,且时,求代数式的值:
②.且时学生小朋通过演算发现代数式是一个定值
老师点评:小朋同学的演算发现还不完整!
请你通过演算解释为什么“小朋的演算发现”是不完整的?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com