【题目】如图,和是等腰直角三角形,.点为边上一点,连接、交于点,点恰好是中点,连接.
(1)求证:;
(2)写出与的关系并证明.
【答案】(1)见解析(2)AN⊥EM,AN=EN,理由见解析
【解析】
(1)由∠CED=∠BCE=90°,可证得BC∥DE,然后由点N恰好是BD中点,利用ASA可证得△BMN≌△DEN,继而证得结论;
(2)由△ABC和△CDE是等腰直角三角形,易证得△ABM≌△ACE,则可证得△AME是等腰直角三角形,继而证得AN⊥EM,AN=EN.
(1)证明:∵∠CED=∠BCE=90°,
∴BC∥DE,
∴∠MBN=∠EDN,
∵点N恰好是BD中点,
∴BN=DN,
在△BMN和△DEN中,
,
∴△BMN≌△DEN(ASA),
∴MN=EN;
(2)位置关系:AN⊥,数量关系:AN=.
理由如下:
∵△BMN≌△DEN,
∴BM=DE,
∵△ABC和△CDE是等腰直角三角形,
∴AB=AC,∠ABM=∠ACB=45°,DE=CE,
∴BM=CE,
∵∠BCE=90°,
∴∠ACE=45°,
∴∠ABM=∠ACE,
在△ABM和△ACE中,
,
∴△ABM≌△ACE(SAS),
∴AM=AE,∠BAM=∠CAE,
∴∠BAM+∠CAM=∠CAE+∠CAM,
即∠MAE=∠BAC=90°,
∵MN=EN,
∴AN⊥EN,AN=EN.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线l1:y=x与直线l2交点A的横坐标为2,将直线l1沿y轴向下平移4个单位长度,得到直线l3,直线l3与y轴交于点B,与直线l2交于点C,点C的纵坐标为﹣2.直线l2与y轴交于点D.
(1)求直线l2的解析式;
(2)求△BDC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )
A. 75° B. 80° C. 85° D. 90°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,弦CD⊥AB于点E,点G在直径DF的延长线上,∠D=∠G=30°.
(1)求证:CG是⊙O的切线 (2)若CD=6,求GF的长
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y1=2x-2的图像与y轴交于点A,直线y2=-2x+6的图像与y轴交于点B,两者相交于点C.
(1)方程组的解是______;
(2)当y1>0与y2>0同时成立时,x的取值范围为_____;
(3)求△ABC的面积;
(4)在直线y1=2x-2的图像上存在异于点C的另一点P,使得△ABC与△ABP的面积相等,请求出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线M:y=ax2+bx+c(a≠0)经过A(﹣1,0),且顶点坐标为B(0,1).
(1)求抛物线M的函数表达式;
(2)设F(t,0)为x轴正半轴上一点,将抛物线M绕点F旋转180°得到抛物线M1.
①抛物线M1的顶点B1的坐标为 ;
②当抛物线M1与线段AB有公共点时,结合函数的图象,求t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若一个四位自然数满足个位与百位相同,十位与千位相同,我们称这个数为“双子数”.将“双子数”的百位、千位上的数字交换位置,个位、十位上的数字也交换位置,得到个新的双子数,记为“双子数”的“双11数”.例如,,,则.
(1)计算2424的“双11数”______;
(2)若“双子数”的“双11数”的是一个完全平方数,求的值;
(3)已知两个“双子数”、,其中,(其中,,,且、、、都为整数,若的“双11数”能被17整除,且、的“双11数”满足,令,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的一点,
(1)求证:△ACE≌△BCD;
(2)若DE=13,BD=12,求线段AB的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com