【题目】如图,在中,,,是边上点(点与,不重合),连结,将线段绕点按逆时针方向旋转90°得到线段,连结交于点,连接.
(1)求证:;
(2)当时,求的度数;
(3)若,,求的长.
【答案】(1)见解析;(2);(3)
【解析】
(1)由题意可知:CD=CE,∠DCE=90°,由于∠ACB=90°,所以∠ACD=∠ACB-∠DCB,∠BCE=∠DCE-∠DCB,所以∠ACD=∠BCE,从而可证明△ACD≌△BCE(SAS)
(2)由△ACD≌△BCE可得∠A=∠CBE=45°,AD=BE=BF,从而可求出∠BEF的度数;
(3)根据∠DBE=∠ABC+∠CBE=90°,可得△DBE是直角三角形,由勾股定理可求出DE的长,进而可求出CD的长.
(1)证明:由题意可知:,,
∵,
∴,
,
∴,
在与中,
,
∴
(2)∵,,
∴,
∵
∴,AD=BE;
∵,
∴,
∴;
(3)∵,
∴,,
∵,
∴,
∵,
∴是直角三角形,
∴,
∵是等腰直角三角形,
∴
∴.
科目:初中数学 来源: 题型:
【题目】如图,点C,D是半圆O上的三等分点,直径AB=4,连接AD,AC,作DE⊥AB,垂足为E,DE交AC于点F.
(1)求证:AF=DF.
(2)求阴影部分的面积(结果保留π和根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形OABC的两边落在坐标轴上,反比例函数y=的图象在第一象限的分支过AB的中点D交OB于点E,连接EC,若△OEC的面积为12,则k=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于x的一元二次方程mx2+(2m+1)x+m=0有两个实数根.
(1)求m的取值范围
(2)是否存在实数m,使方程的两实数根的倒数和为0?若存在,请求出m的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知⊙O中,弦AB⊥AC,且AB=AC=6,点D在⊙O上,连接AD,BD,CD.
(1)如图1,若AD经过圆心O,求BD,CD的长;
(2)如图2,若∠BAD=2∠DAC,求BD,CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:角的内部一点到角两边的距离比为1:2,这个点与角的顶点所连线段称为这个角的二分线.如图1,点P为∠AOB内一点,PA⊥OA于点A,PB⊥OB于点B,且PB=2PA,则线段OP是∠AOB的二分线.
(1)图1中,OP为∠AOB的二分线,PB=4,PA=2,且OA+OB=8,求OP的长;
(2)如图2,正方形ABCD中,AB=2,点E是BC中点,证明:DE是∠ADC的二分线;
(3)如图3,四边形ABCD中,AB∥CD,∠ABC=90°,且∠CAB<∠CAD,∠BDC<∠BDA,若AC,BD分别是∠DAB,∠ADC的二分线,证明:四边形ABCD是矩形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c与x轴交于点A、B,与y轴交于点C,点O为坐标原点,点D为抛物线顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3,则△ABD的面积为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A逆时针旋转后,得到△P′AB.
(1)求点P与点P′之间的距离;
(2)求∠APB的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com