精英家教网 > 初中数学 > 题目详情
已知x1,x2是关于x的一元二次方程x2-(2m+3)x+m2=0的两个不相等的实数根,且满足x1+x2=m2,求m的值.
分析:根据一元二次方程根的判别式的意义得到△=(2m+3)2-4m2>0,解得m>-
3
4
;再根据根与系数的关系得x1+x2=2m+3,则2m+3=m2,解方程得m1=3,m2=-1,然后根据m的取值范围确定满足条件的m的值.
解答:解:根据题意得△=(2m+3)2-4m2>0,解得m>-
3
4

根据根与系数的关系得x1+x2=2m+3,
则2m+3=m2
整理得m2-2m-3=0,即(m-3)(m+1)=0,
解得m1=3,m2=-1,
则m=3.
点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=-
b
a
,x1•x2=
c
a
..也考查了一元二次方程根的判别式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知x1,x2是关于x的方程(x-2)(x-m)=(p-2)(p-m)的两个实数根.
(1)求x1,x2的值;
(2)若x1,x2是某直角三角形的两直角边的长,问当实数m,p满足什么条件时,此直角三角形的面积最大?并求出其最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

19、已知x1,x2是关于x的一元二次方程x2-6x+k=0的两个实数根,且x12x22-x1-x2=115.
(1)求k的值;
(2)求x12+x22+8的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

21、已知x1、x2是关于x的方程x2-2x+t+2=0的两个不相等的实数根.
(1)求t的取值范围;
(2)设S=x1•x2,求S关于t的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知x1,x2是关于x的方程x2+mx+n=0的两根,x1+1,x2+1是关于x的方程x2+nx+m=0的两根,求m,n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知x1、x2是关于x的一元二次方程x2+(3a-1)x+2a2=0的两个实数根,使得(3x1-x2)(x1-3x2)=-80成立,求其实数a的可能值.

查看答案和解析>>

同步练习册答案