某中学为了让学生的跳远在中考体育测试中取得满意的成绩,在锻炼一个月后,学校对九年级一班的45名学生进行测试,成绩如下表:
跳远成绩(cm) | 160 | 170 | 180 | 190 | 200 | 220 |
人数 | 3 | 9 | 6 | 9 | 15 | 3 |
这些运动员跳远成绩的中位数和众数分别是
A. 190,200 B.9,9 C.15,9 D.185,200
科目:初中数学 来源: 题型:
如图,AB、AC分别与⊙O相切,切点分别为B、C,过点C作CD∥AB,交⊙O于点D,连接BC、BD.
(1)判断BC与BD的数量关系,并说明理由;
(2)若AB=9,BC=6,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
类比、转化、分类讨论等思想方法和数学基本图形在数学学习和解题中经常用到,如下是一个案例,请补充完整。
原题:如图1,在⊙O中,MN是直径,AB⊥MN于点B,CD⊥MN于点D,∠AOC=90°,AB=3,CD=4,则BD= 。
⑴尝试探究:如图2,在⊙O中,MN是直径,AB⊥MN于点B,CD⊥MN于点D,点E在MN上,∠AEC=90°,AB=3,BD=8,BE:DE=1:3,则CD= (试写出解答过程)。
⑵类比延伸:利用图3,再探究,当A、C两点分别在直径MN两侧,且AB≠CD,AB⊥MN于点B,CD⊥MN于点D,∠AOC=90°时,则线段AB、CD、BD满足的数量关系为 。
⑶拓展迁移:如图4,在平面直角坐标系中,抛物线经过A(m,6),B(n,1)两点(其中0<m<3),且以y轴为对称轴,且∠AOB=90°,①求mn的值;②当S△AOB=10时,求抛物线的解析式。
查看答案和解析>>
科目:初中数学 来源: 题型:
如图。在四边形纸片ABCD中,∠A=130°,∠C=40°,现将其右下角向内折出⊿FGE,折痕为EF,恰使GF∥AD,GE∥CD,则∠B的度数为( )
A.90° B.95° C.100° D.105°
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在梯形ABCD中,AD∥BC,∠D=90°,BC=CD=12,点E在DC上,∠ABE=45°,AE,BC的延长线相交于点F,若AE=10,则S⊿ADE+S⊿CEF的值是 。
查看答案和解析>>
科目:初中数学 来源: 题型:
对于实数定义一种运算为:,有下列命题:
①;
②方程的根为:
③不等式组的解集为
④在函数的图像与坐标轴交点组成的三角形面积为3,则此函数的顶点坐标是其中正确的( )
A.①②③④ B.①②③ C.①② D.①②④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com