【题目】如图,已知B、C、E三点在同一条直线上,△ABC与△DCE都是等边三角形.其中线段BD交AC于点G,线段AE交CD于点F.
求证:(1)△ACE≌△BCD;(2)△GFC是等边三角形.
【答案】(1)证明见解析;(2)证明见解析.
【解析】试题分析:1)利用等边三角形的性质得出条件,可证明:△ACE≌△BCD;
(2)利用△ACE≌△BCD得出∠CBG=∠CAF,再运用平角定义得出∠BCG=∠ACF进而得出△BCG≌△ACF,因此CG=CF,再由∠ACF=60°根据“有一个角是60°的三角形是等边三角形可得△GFC是等边三角形.
试题解析:证明:(1)∵△ABC和△CDE都是等边三角形,
∴∠BCA=∠DCE=60°,BC=AC=AB,EC=CD=ED,
∴∠BCD=∠ACE,
在△BCD和△ACE中,
,
∴△ACE≌△BCD;
(2)∵△BCD≌△ACE,
∴∠CBG=∠CAF.
∵∠ACB=∠DCE=60°,
∴∠ACF=60°.
∴∠BCG=∠ACF,
在△BCG和△ACF中,
,
∴△BCG≌△ACF(ASA),
∴CG=CF;
∵∠ACF=60°,
∴△GFC是等边三角形.
科目:初中数学 来源: 题型:
【题目】下列说法中,正确的是( )
A.正数和负数统称为有理数
B.0是最小的有理数
C.如果两个数的绝对值相等,那么这两个数一定相等
D.互为相反数的两个数之和为零
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A.一个数的绝对值一定大于它的本身
B.只有正数的绝对值是它的本身
C.负数的绝对值是它的相反数
D.一个数的绝对值是它的相反数,则这个数一定是负数
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠C=Rt∠,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.
(1)出发2秒后,求△ABP的周长.
(2)问t满足什么条件时,△BCP为直角三角形?
(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点的坐标,点的坐标,点的坐标,点的坐标,如图①,另有一点从点出发,沿着运动,到点停止.
()当在上时, __________.
()点在运动过程中,直接写出可以和形成等腰三角形的点的坐标.
()将图①中的长方形在坐标平面内绕原点按逆时针方向旋转,如图②,求出此时点、、的坐标?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系 xOy 中,已知点 A(0,3),点 B(,0),连接 AB.若对于平 面内一点 C,当△ABC 是以 AB 为腰的等腰三角形时,称点 C 是线段 AB 的“等长点”
(1)在点 C1 (-2, ),点 C2 (0,-2),点 C3 (, )中,线段 AB 的“等长点”是点______________;
(2)若点 D( m , n )是线段 AB 的“等长点”,且∠DAB=60,求 m 和 n 的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com