精英家教网 > 初中数学 > 题目详情
6.直线y=kx+b与y=-5x+1平行,且经过(2,1),则kb=-55.

分析 由平行线的关系得出k=-5,再把点(2,1)代入直线y=-5x+b,求出b,即可得出结果.

解答 解:∵直线y=kx+b与直线y=-5x+1平行,
∴k=-5,
∴直线y=-5x+b,
把点(2,1)代入得:-10+b=1,
∴b=11,
∴kb=-55.
故答案为:-55.

点评 本题考查了两条直线平行的性质、直线解析式的求法;熟练掌握两条直线平行的性质,求出直线解析式是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

16.中国国旗上的一个五角星的对称轴的条数是(  )
A.1条B.2条C.5条D.10条

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.计算下列各式的值:
(1)$\sqrt{27}$+2×$\frac{\sqrt{3}}{2}$
(2)$\root{3}{8}$-|$\sqrt{2}$-2|

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图,在△ABC中,点D,E分别在AB,AC上,且DE∥BC,若AD=1,DB=2,则$\frac{AE}{EC}$的值为(  )
A.1:2B.1:3C.1:4D.2:3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.把下列多项式分解因式
(1)6x2y+12xy;
(2)a2+4b(a+b);
(3)x3-25x;
(4)x3-4x2+4x.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.为满足市场需求,某超市购进一种品牌糕点,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.
(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;
(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?
(3)为稳定物价,有关管理部门限定:这种糕点的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售糕点多少盒?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.(1)解方程:x2-12x-28=0
(2)解方程:$\frac{x}{x-1}$+$\frac{1}{x}$=1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.多项式a2-a+2中,下列说法错误的是(  )
A.一次项系数为1B.二次项系数为1C.是二次三项式D.常数项为2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.阅读学习
计算:$\frac{\sqrt{2}-1}{\sqrt{2}}$+$\frac{\sqrt{3}-\sqrt{2}}{\sqrt{2}×\sqrt{3}}$+$\frac{2-\sqrt{3}}{\sqrt{3}×2}$+$\frac{\sqrt{5}-2}{2×\sqrt{5}}$.
可以用下面的方法解决上面的问题:
$\frac{\sqrt{2}-1}{\sqrt{2}}$+$\frac{\sqrt{3}-\sqrt{2}}{\sqrt{2}×\sqrt{3}}$+$\frac{2-\sqrt{3}}{\sqrt{3}×2}$+$\frac{\sqrt{5}-2}{2×\sqrt{5}}$
=($\frac{\sqrt{2}}{\sqrt{2}}$-$\frac{1}{\sqrt{2}}$)+($\frac{\sqrt{3}}{\sqrt{2}×\sqrt{3}}$-$\frac{\sqrt{2}}{\sqrt{2}×\sqrt{3}}$)+($\frac{2}{\sqrt{3}×2}$-$\frac{\sqrt{3}}{\sqrt{3}×2}$)+($\frac{\sqrt{5}}{2×\sqrt{5}}$-$\frac{2}{\sqrt{5}×2}$)
=(1-$\frac{1}{\sqrt{2}}$)+($\frac{1}{\sqrt{2}}$-$\frac{1}{\sqrt{3}}$)+($\frac{1}{\sqrt{3}}$-$\frac{1}{2}$)+($\frac{1}{2}$-$\frac{1}{\sqrt{5}}$)
=1-$\frac{1}{\sqrt{5}}$=1-$\frac{\sqrt{5}}{5}$
利用上面的方法解决问题:
(1)计算$\frac{\sqrt{2}-1}{\sqrt{2}}$+$\frac{\sqrt{3}-\sqrt{2}}{\sqrt{2}×\sqrt{3}}$+$\frac{2-\sqrt{3}}{\sqrt{3}×2}$+$\frac{\sqrt{5}-2}{2×\sqrt{5}}$+…+$\frac{10-\sqrt{99}}{\sqrt{99}×10}$.
(2)当n=1时,等式$\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}\sqrt{n+1}}$+$\frac{\sqrt{n+2}-\sqrt{n+1}}{\sqrt{n+1}\sqrt{n+2}}$+$\frac{\sqrt{n+3}-\sqrt{n+2}}{\sqrt{n+2}\sqrt{n+3}}$=$\frac{1}{\sqrt{n+3}}$成立.

查看答案和解析>>

同步练习册答案