精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中有一直角梯形OABC,∠AOC=90°,ABOC,OC在x轴上,过A、B、C三点的抛物线表达式为y=-
1
18
x2+
4
9
x+10

(1)求A、B、C三点的坐标;
(2)如果在梯形OABC内有一矩形MNPO,使M在y轴上,N在BC边上,P在OC边上,当MN为多少时,矩形MNPO的面积最大?最大面积是多少?
(3)若用一条直线将梯形OABC分为面积相等的两部分,试说明你的分法.
(1)由图形得,点A横坐标为0,将x=0代入y=-
1
18
x2+
4
9
x+10

得y=10,
∴A(0,10)
∵ABOC,
∴B点纵坐标为10,将y=10代入抛物线表达式得,
10=-
1
18
x2+
4
9
x+10

∴x1=0,x2=8.
∵B点在第一象限,
∴B点坐标为(8,10)
∵C点在x轴上,
∴C点纵坐标为0,将y=0代入抛物线表达式得,
-
1
18
x2+
4
9
x+10=0

解得x1=-10,x2=18.
∵C在原点的右侧,
∴C点坐标为(18,0). (4分)
(2)法一:过B作BQ⊥OC,交MN于H,交OC于Q,则Rt△BNHRt△BCQ,
BH
BQ
=
HN
QC
. (5分)
设MN=x,NP=y,则有
10-y
10
=
x-8
18-8

∴y=18-x. (6分)
∴S矩形MNOP=xy=x(18-x)=-x2+18x=-(x-9)2+81.
∴当x=9时,有最大值81.
即MN=9时,矩形MNPO的面积最大,最大值为81. (8分)

法二:过B作BQ⊥x轴于Q,则Rt△CPNRt△CQB,
CP
CQ
=
NP
BQ

设MN=x,NP=y,则有
18-x
18-8
=
y
10

∴y=18-x.
∴S矩形MNOP=xy=x(18-x)=-x2+18x=-(x-9)2+81.
∴当x=9时,有最大值81.
即MN=9时,矩形MNPO的面积最大,最大值为81.
法三:利用Rt△BHNRt△NPC也能解答,解答过程与法二相同.
法四:过B点作BQ⊥x轴于Q,则Rt△BQCRt△NPC,
QC=OC-OQ=18-8=10,又QB=OA=10,
∴△BQC为等腰直角三角形,
∴△NPC为等腰直角三角形.
设MN=x时矩形MNPO的面积最大.
∴PN=PC=OC-OP=18-x.
∴S矩形MNOP=MN•PN=x(18-x)=-x2+18x=-(x-9)2+81.
∴当x=9时,有最大值81.
即MN=9时,矩形MNPO的面积最大,最大值为81.
(3)①对于任意一条直线,将直线从直角梯形的一侧向另一侧平移的过程中,总有一个位置使得直线将该梯形面积分割
成相等的两部分.

②过上、下底作一条直线交AB于E,交OC于F,且满足于梯形AEFO或梯形BEFC的上底与下底的和为13即可. (4分)

③构造一个三角形,使其面积等于整个梯形面积的一半,因此有:
△OCP1P1(0,
65
9
)
;△OCP2P2(
97
9
65
9
)
;△OAP3,P3(13,0);△CBP4,P4(5,0);
④平行于两底的直线,一定会有其中的一条将原梯形分成面积相等的两部分;
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2+bx+c(a<0)交x轴于点A(-1,0)、B(3,0),交y轴于点C.
(1)求抛物线的顶点M的坐标;(用a的代数式表示)
(2)直线y=x+d经过C、M两点,并且与x轴交于点D.
①求抛物线的函数表达式;
②若四边形CDAN是平行四边形,且点N在抛物线上,则点N的坐标为(______,______);
③设点P是抛物线对称轴上一动点,请探索:是否存在这样的点P,使以点P为圆心的圆经过A、B两点,并且与直线CD相切?如果存在,请求出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

小明在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线y=-
1
4
x2+2x,其中y(m)是球的飞行高度,x(m)是球飞出的水平距离,结果球离球洞的水平距离还有2m.
(1)求抛物线的顶点坐标;
(2)求出球飞行的最大水平距离;
(3)若小明第二次仍从此处击球,使其最大高度不变,而球刚好进洞,则球飞行的路线满足抛物线的解析式是什么?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,已知直线y=
1
2
x与抛物线y=ax2+b(a≠0)交于A(-4,-2),B(6,3)两点.抛物线与y轴的交点为C.
(1)求这个抛物线的解析式;
(2)在抛物线上存在点M,是△MAB是以AB为底边的等腰三角形,求点M的坐标;
(3)在抛物线上是否存在点P使得△PAC的面积是△ABC面积的
3
4
?若存在,试求出此时点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线y=-x2+2bx-(2b-1)(b为常数)与x轴相交于A(x1,0),B(x2,0)(x2>x1>0)两点,设OA•OB=3(O为坐标系原点).
(1)求抛物线的解析式;
(2)设抛物线的顶点为C,抛物线的对称轴交x轴于点D,求证:点D是△ABC的外心;
(3)在抛物线上是否存在点P,使S△ABP=1?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知y=x2-ax+a+2与x轴交于A,B两点,与y轴交于点D(0,8),直线CD平行于x轴,交抛物线于另一点C,动点P以每秒2个单位长度的速度从点C出发,沿C?D运动,同时,点Q以每秒1个单位长度的速度从点A出发,沿A?B运动,连接PQ,CB,设点P的运动时间t秒.(0<t<2).
(1)求a的值;
(2)当t为何值时,PQ平行于y轴;
(3)当四边形PQBC的面积等于14时,求t的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线的顶点为(0,4)且与x轴交于(-2,0),(2,0).

(1)直接写出抛物线解析式;
(2)如图,将抛物线向右平移k个单位,设平移后抛物线的顶点为D,与x轴的交点为A、B,与原抛物线的交点为P.
①当直线OD与以AB为直径的圆相切于E时,求此时k的值;
②是否存在这样的k值,使得点O、P、D三点恰好在同一条直线上?若存在,求出k值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

图1至图4的正方形霓虹灯广告牌ABCD都是20×20的等距网格(每个小方格的边长均为1个单位长),其对称中心为点O.
如图1,有一个边长为6个单位长的正方形EFGH的对称中心也是点O,它以每秒1个单位长的速度由起始位置向外扩大(即点O不动,正方形EFGH经过一秒由6×6扩大为8×8;再经过一秒,由8×8扩大为10×10;…),直到充满正方形ABCD,再以同样的速度逐步缩小到起始时的大小,然后一直不断地以同样速度再扩大、再缩小.
另有一个边长为6个单位长的正方形MNPQ从如图1所示的位置开始,以每秒1个单位长的速度,沿正方形ABCD的内侧边缘按A→B→C→D→A移动(即正方形MNPQ从点P与点A重合位置开始,先向左平移,当点Q与点B重合时,再向上平移,…).
正方形EFGH和正方形MNPQ从如图1的位置同时开始运动,设运动时间为x秒,它们的重叠部分面积为y个平方单位.
(1)当正方形MNPQ第一次回到起始位置时,正方形EFGH是否也变化到起始位置?
(2)请你在图2和图3中分别画出x为3秒、18秒时,正方形EFGH和正方形MNPQ的位置及重叠部分(重叠部分用阴影表示),并分别写出重叠部分的面积;
(3)正方形EFGH第一次充满正方形ABCD之前(即x≤7时),何时正方形EFGH和正方形MNPQ重叠部分的面积为3平方单位.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数的解析式为y=-x2+2x+1.
(1)写这个二次函数图象的对称轴和顶点坐标,并求图象与x轴的交点坐标;
(2)在给定的坐标系中画出这个二次函数大致图象,并求出抛物线与坐标轴的交点所组成的三角形的面积.

查看答案和解析>>

同步练习册答案