精英家教网 > 初中数学 > 题目详情
8.如图,AC、BD为圆O的两条垂直的直径,动点P从圆心O出发,沿线段OC-$\widehat{CD}$-线段DO的路线作匀速运动,设运动时间为t秒,∠APB的度数为y度,则下列图象中表示y与t的函数关系最恰当的是(  )
A.B.C.D.

分析 根据题意,分P在OC、CD、DO之间3个阶段,分别分析变化的趋势,又由点P作匀速运动,故①③都是线段,分析选项可得答案.

解答 解:根据题意,分3个阶段;
①P在OC之间,∠APB逐渐减小,到C点时,为45°,
②P在CD之间,∠APB保持45°,大小不变,
③P在DO之间,∠APB逐渐增大,到O点时,为90°;
又由点P作匀速运动,故①③都是线段;
分析可得:C符合3个阶段的描述;
故选:C.

点评 本题主要考查了函数图象与几何变换,解决此类问题,注意将过程分成几个阶段,依次分析各个阶段得变化情况,进而综合可得整体得变化情况.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

18.如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC边于点Q,以PQ为一边作正方形PQMN,使点N落在射线PD上,连CM、DM,设运动时间为t(单位:s)
(1)用含t的代数式表示BQ与PQ长;
(2)若△DMN与△CMQ的面积之比为5:3,求出t的值;
(3)在运动过程中,是否存在t的值,使得△CMQ与△DMN相似,若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.以A(2,3)为圆心的圆与两坐标轴共有三个公共点,则⊙A的半径是3或$\sqrt{13}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.已知某公司去年的营业额约为四千零七十万元,则此营业额可表示为(  )
A.4.07×105B.4.07×106C.4.07×107D.4.07×108

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在长方形纸片ABCD中,AB=6cm,BC=10cm,将长方形纸片沿AE折叠,使点D落在BC边的点F处.试求折痕AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图,数轴上A,B两点之间表示的整数共有(  )
A.5个B.6个C.7个D.8个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.下列函数中,y随x的增大而减小的是(  )
A.y=xB.y=x2C.y=$\frac{2}{x}$D.y=$\frac{4}{x}$(x<0)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如果抛物线C1的顶点在抛物线C2上,同时,抛物线C2的顶点在抛物线C1上,那么,我们称抛物线C1与C2关联.
(1)已知抛物线①:y=-2x2+4x+3与②:y=2x2+4x-1,请判断抛物线①与抛物线②是否关联,并说明理由;
(2)将抛物线C1:y=-2x2+4x+3沿x轴翻折,再向右平移m(m>0)个单位,得到抛物线C2,若抛物线C1与C2关联,求m的值;
(3)点A为抛物线C1:y=-2x2+4x+3的顶点,点B为抛物线C1关联的抛物线的顶点(点B位于x轴的下方),是否存在以AB为斜边的等腰直角三角形ABC,使其直角顶点C在x轴上?若存在,求出C点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.在Rt△ABC中,∠C=90°,若cosA=$\frac{2}{3}$,BC=10,求AC,AB的长.

查看答案和解析>>

同步练习册答案