如图,在矩形ABCD中,AB=4,BC=3,点O为对角线BD的中点,点P从点A出发,沿折线AD﹣DO﹣OC以每秒1个单位长度的速度向终点C运动,当点P与点A不重合时,过点P作PQ⊥AB于点Q,以PQ为边向右作正方形PQMN,设正方形PQMN与△ABD重叠部分图形的面积为S(平方单位),点P运动的时间为t(秒).
(1)求点N落在BD上时t的值;
(2)直接写出点O在正方形PQMN内部时t的取值范围;
(3)当点P在折线AD﹣DO上运动时,求S与t之间的函数关系式;
(4)直接写出直线DN平分△BCD面积时t的值.
解:(1)当点N落在BD上时,如图1.
∵四边形PQMN是正方形,
∴PN∥QM,PN=PQ=t.
∴△DPN∽△DQB.
∴.
∵PN=PQ=PA=t,DP=3﹣t,QB=AB=4,
∴.
∴t=.
∴当t=时,点N落在BD上.
(2)①如图2,
则有QM=QP=t,MB=4﹣t.
∵四边形PQMN是正方形,
∴MN∥DQ.
∵点O是DB的中点,
∴QM=BM.
∴t=4﹣t.
∴t=2.
②如图3,
∵四边形ABCD是矩形,
∴∠A=90°.
∵AB=4,AD=3,
∴DB=5.
∵点O是DB的中点,
∴DO=.
∴1×t=AD+DO=3+.
∴t=.
∴当点O在正方形PQMN内部时,t的范围是2<t<.
(3)①当0<t≤时,如图4.
S=S正方形PQMN=PQ2=PA2=t2.
②当<t≤3时,如图5,
∵tan∠ADB==,
∴=.
∴PG=4﹣t.
∴GN=PN﹣PG=t﹣(4﹣t)=﹣4.
∵tan∠NFG=tan∠ADB=,
∴.
∴NF=GN=(﹣4)=t﹣3.
∴S=S正方形PQMN﹣S△GNF
=t2﹣×(﹣4)×(t﹣3)
=﹣t2+7t﹣6.
③当3<t≤时,如图6,
∵四边形PQMN是正方形,四边形ABCD是矩形.
∴∠PQM=∠DAB=90°.
∴PQ∥AD.
∴△BQP∽△BAD.
∴==.
∵BP=8﹣t,BD=5,BA=4,AD=3,
∴.
∴BQ=,PQ=.
∴QM=PQ=.
∴BM=BQ﹣QM=.
∵tan∠ABD=,
∴FM=BM=.
∴S=S梯形PQMF=(PQ+FM)•QM
=[+]•
=(8﹣t)2
=t2﹣t+.
综上所述:当0<t≤时,S=t2.
当<t≤3时,S=﹣t2+7t﹣6.
当3<t≤时,S=t2﹣t+.
(4)设直线DN与BC交于点E,
∵直线DN平分△BCD面积,
∴BE=CE=.
①点P在AD上,过点E作EH∥PN交AD于点H,如图7,
则有△DPN∽△DHE.
∴.
∵PN=PA=t,DP=3﹣t,DH=CE=,EH=AB=4,
∴.
解得;t=.
②点P在DO上,连接OE,如图8,
则有OE=2,OE∥DC∥AB∥PN.
∴△DPN∽△DOE.
∴.
∵DP=t﹣3,DO=,OE=2,
∴PN=(t﹣3).
∵PQ=(8﹣t),PN=PQ,
∴(t﹣3)=(8﹣t).
解得:t=.
③点P在OC上,设DE与OC交于点S,连接OE,交PQ于点R,如图9,
则有OE=2,OE∥DC.
∴△DSC∽△ESO.
∴.
∴SC=2SO.
∵OC=,
∴SO==.
∵PN∥AB∥DC∥OE,
∴△SPN∽△SOE.
∴.
∵SP=3++﹣t=,SO=,OE=2,
∴PN=.
∵PR∥MN∥BC,
∴△ORP∽△OEC.
∴.
∵OP=t﹣,OC=,EC=,
∴PR=.
∵QR=BE=,
∴PQ=PR+QR=.
∵PN=PQ,
∴=.
解得:t=.
综上所述:当直线DN平分△BCD面积时,t的值为、、.
科目:初中数学 来源: 题型:
下列命题是假命题的是( )
| A. | 不在同一直线上的三点确定一个圆 |
| B. | 矩形的对角线互相垂直且平分 |
| C. | 正六边形的内角和是720° |
| D. | 角平分线上的点到角两边的距离相等 |
查看答案和解析>>
科目:初中数学 来源: 题型:
下列事件中,必然事件是
A. 抛掷一枚硬币,正面朝上
B. 打开电视,正在播放广告
C. 体育课上,小刚跑完1000米所用时间为1分钟
D. 袋中只有4个球,且都是红球,任意摸出一球是红球
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com